

First volcanic CO₂ budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

Philippe Robidoux (1,2), Alessandro Aiuppa (1,2), Vladimir Conde (3), Bo Galle (3), Gaetano Giudice (2), Geoffroy Avard (4), and Angélica Muñoz (5)

(1) Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Palermo, Italy, (2) Istituto Nazionale di Geofisica e Vulcanologia, Palermo, Italy, (3) Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden, (4) Observatorio Vulcanológico y Sismológico de Costa Rica (OVSICORI-UNA), Heredia, Costa Rica, (5) Instituto Nicaragüense de Estudios Territoriales (INETER), Managua, Nicaragua

CO₂ is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO₂ release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO₂ output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO₂ fluxes (from the NOVAC network (3)) and CO₂ vs. SO₂ concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO₂/SO₂ ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO₂ - SO₂ - H₂O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO₂/SO₂ ratios were then multiplied by the SO₂ flux in order to derive the CO₂ output. At Turrialba, CO₂/SO₂ ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO₂ flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO₂/SO₂ ratio was observed (3.3 ± 1.0), although the CO₂ flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO₂/SO₂ ratio ranged between 1.8 and 7.4, with a mean CO₂ flux of 753 t/d. These measurements contribute refining the current estimates of the total CO₂ output from the Central American Volcanic Arc (7).

1. Symonds, R.B. et al., (2001). *J. Volcanol. Geotherm. Res.*, 108, 303-341
2. Burton, M. R. et al. (2013). *Reviews in Mineralogy & Geochemistry*, 75, 323-354
3. Galle et al., (2010). *J. Geophys. Res.*, 115, D05304
4. Aiuppa, A. et al. (2009). *J. Volcanol. Geotherm. Res.*, 182, 221-230
5. Shinohara, H. (2008). *Rev. Geophys.*, 46, RG4005
6. Conde, V. et al. (2013). *International Journal of Earth Sciences*, (submitted)
7. Mather et al (2006). *J. Volcanol. Geotherm. Res.*, 149, 297-311