

Search for nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

Rafael Navarro-Gonzalez (1), Jennifer Stern (2), Caroline Freissinet (2), Heather Franz (2), Christopher McKay (3), Patrice Coll (4), Brad Sutter (5), Doug Archer (5), Amy McAdam (2), Michel Cabane (6), Douglas Ming (5), Daniel Glavin (2), Jennifer Eigenbrode (2), Laurie Leshin (7), Michael Wong (8), Sushil Atreya (8), James Wray (9), Andrew Steele (10), Arnaud Buch (11), Benito Prats (2,12), and the Cyril Szopa (6), David Coscia (6), Samuel Teinturier (6), Pamela Conrad (2), Paul Mahaffy (2), John Grotzinger (12), and the MSL Science Team (1) Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Ciudad Universitaria, Mexico City, 04510 Mexico (navarro@nucleares.unam.mx), (2) NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, (3) NASA Ames Research Center, Moffett Field, CA 94035, USA, (4) LISA, Univ. Paris-Est Créteil, Univ. Denis Diderot & CNRS, 94000 Créteil, France, (5) JETS/Jacobs Technology, Inc. at NASA Johnson Space Center, Houston, TX 77258, USA, (6) 6LATMOS, Univ. Pierre et Marie Curie, Univ. Versailles Saint-Quentin & CNRS, 75005 Paris, France, (7) Rensselaer Polytechnic Institute, Troy, NY 12180, USA, (8) University of Michigan, Ann Arbor, MI 48109, USA, (9) Georgia Institute of Technology, Atlanta, GA 30332, USA, (10) Geophysical Laboratory, Washington, DC 20015, USA, (11) Ecole Centrale Paris, LGPM, 92295 Châtenay-Malabry, France, (12) California Institute of Technology, Pasadena, CA 91125 USA

One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions capable of supporting microbial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N_2). However, a fraction of N_2 has been lost to space by sputtering and photochemical processes [1, 2], impact erosion [3], and chemical oxidation to nitrates [4, 5]. Nitrates produced early in Mars' history by photochemistry may later decompose back into N_2 by the current impact flux [6]. It is estimated that the Martian surface could contain soil nitrates at levels of 0.3 wt.% N, if mixed homogenously [6], or a layer of pure $NaNO_3$ of about 3 m thickness [5] distributed globally. Nitrates are a fundamental source for nitrogen for terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous attempt to search for soil nitrates was by TEGA and the MECA WCL on the Phoenix mission but no evolved N-containing species were detected [7]. Nitrates have been tentatively identified in two Martian meteorites: Nakhla [8] and EETA79001 [9]. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO. SAM analyzed samples from Rocknest soil and two drill holes located at John Klein (JK) and Cumberland (CB) mudstones in the Sheepbed member of the Yellowknife Bay formation in Gale Crater. There appear to be several peaks associated with the release of m/z 30 in the temperature range from 150°C to 600°C. m/z 30 can be attributed to nitric oxide; however, other possible chemical interferences may be present and are assessed. The origin of nitric oxide is discussed and its thermal evolution is compared with analog studies of mixtures of nitrates and perchlorates [10].

[1] Luhmann, J.G., Johnson E. And Zhang, M.H.G.: 1992, Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions. *Geophys. Res. Lett.* 19, 2151-2154. [2] Jakosky, B.M. Pepin, R.O., Johnsom, R.E. and Fox, J.L: 1994, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. *Icarus*, 111, 271–288. [3] Melosh, H.J. and Vickery, A.M.: 1989, Impact erosion of the primordial atmosphere of Mars. *Nature* 338, 487-489. [4] Mancinelli, R.L. and McKay, C.P. :1988, The evolution of nitrogen cycling. *Origins Life* 18, 311–325. [5] Manning, C.V., McKay, C.P., and Zahnle, K.J.: 2008, The nitrogen cycle on Mars: Impact decomposition of near-surface nitrates as a source for a nitrogen steady state. *Icarus*, 197, 60–64. [6] Smith, M.L., Claire, M.W., Catling, D.C., and Zahnle, K.J.: 2014, The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. *Icarus* 231, 51-64. [7] Hecht, M. H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J., DeFlores, L.P., Gospodinova, K., Kapit, J., and Smith, P.H.: 2009, Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. *Science*, 32, 64–67. [8] Grady, M.M., Wright, I. P., and Pillinger C. T.: 1995, Search for nitrates in Martian meteorite. *J. Geophys. Res.* 100, 5449. [9] Kounaves, S.P., Carrier, B.L., O'Neil, G.D., Stroble, S.T., Claire, M.W.: 2013, Evidence of martian perchlorate, chloride, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics, *Icarus*, doi: <http://dx.doi.org/10.1016/j.icarus.2013.11.012>. [10] Support

from the following grants is acknowledged: IN106013 and CONACYT 98466.