

A new surface-water temperature record for the Oligocene-Miocene Transition from the western North Atlantic (IODP Site U1405)

André Bornemann (1), Iris Möbius (2), Oliver Friedrich (2,3), Diederik Liebrand (4), Paul A. Wilson (4), and the Expedition 342 Scientists Team

(1) Universität Leipzig, Institut für Geophysik & Geologie, Leipzig, Germany (a.bornemann@uni-leipzig.de), (2) Institut für Geowissenschaften, Universität Frankfurt, Germany, (3) Institut für Geowissenschaften, Universität Heidelberg, Germany, (4) National Oceanography Centre, Southampton, University of Southampton

The Oligocene represents an early stage of the Cenozoic icehouse world and is characterized by a high variability in the $\delta^{18}\text{O}$ of deep-sea benthic foraminifera and high-amplitude sea-level fluctuations probably related to southern hemisphere ice sheet instability. This variability culminates in a major glaciation event during the earliest Miocene \sim 23 Million years ago (Mi-1 event). High-quality data sets based of well-preserved planktic foraminifera across the Mi-1 event are scarce and limited to the low-latitudes and southern hemisphere. During IODP Expedition 342 expanded sequences covering the Oligocene to early Miocene transition have been drilled at J-Anomaly Ridge off Newfoundland. These sediments contain exceptionally well-preserved calcareous microfossils and are characterized by high sedimentation rates. Pristinely preserved, “glassy” planktic foraminiferal tests were analyzed at a resolution of \approx 20 kyrs to unravel the long-term climate evolution during the magnetochron interval C6AAr.2n/C6AAr.3r to C6Cn.3n/C6Cr across the Oligocene-Miocene Transition. To achieve this goal, a dual-proxy approach ($\delta^{18}\text{O}$, Mg/Ca) has been employed to estimate sea-surface and thermocline temperatures based predominantly on *Globigerinoides primordius* and *Catapsydrax dissimilis*, respectively. This approach allows for the reconstruction of North Atlantic surface ocean response to the Mi-1 event and how it has been influenced by global climate dynamics. First results show a very high variability in $\delta^{18}\text{O}$ and Mg/Ca for both mixed-layer and thermocline dwelling taxa pointing towards highly variable climatic and oceanographic conditions in the northwestern Atlantic. Both habitats record a distinct shift to heavier $\delta^{18}\text{O}$ and lower Mg/Ca values across the Mi-1 event, implying decreasing temperatures.