

Application of TAM III to study sensitivity of soil organic matter degradation to temperature

Peter Vikegard (1), Nieves Barros (2), and Verónica Piñeiro (3)

(1) Waters Sverige AB, Djupdalsvägen 12-14, SE-192 51 Sollentuna, Sweden. (PVikegard@tainstruments.com), (2) Department of Applied Physics. University of Santiago de Compostela, Spain (nieves.barros@usc.es), (3) RIAIDT Elemental Analysis Services. Lugo. University of Santiago de Compostela, Spain (veronica.pineiro@usc.es)

Traditionally, studies of soil biodegradation are based on CO₂ dissipation rates. CO₂ is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO₂ than carbohydrate respiration, that may not dissipate CO₂, or that even may uptake CO₂. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO₂ rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of up to 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100°C, allowing the continuous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 °C calculating the Q₁₀ and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal properties determined by differential scanning calorimetry and thermogravimetric analysis. The EA values obtained ranged from -30 to -48 kJ/mol increasing with soil depth and with higher heat of combustion values of the samples obtained by DSC, suggesting that increased SOM recalcitrance involves higher investment of energy by the microbial population to degrade SOM. The calorimetrically determined Q₁₀ values were observed to decrease with soil depth and higher heat of combustion, supporting the hypothesis, as given by different authors, that higher SOM recalcitrance can be associated with a decreased sensitivity to temperature as in agreement with the increasing trend of the activation energy