

Nitrogen isotopes from terrestrial organic matter as a new paleoclimatic proxy for pre-quaternary time

romain Tramoy (1), johann Schnyder (1), thanh thuy Nguyen Tu (2), johan Yans (3), jean yves Storme (3), mathieu Sebilo (4), sylvie Derenne (2), jérémie Jacob (5), and françois Baudin (1)

(1) Institut des Sciences de la Terre de Paris (ISTEP), UMR 7193, Université Pierre et Marie Curie (UPMC) et CNRS, 4, pl. Jussieu, 75252 Paris cedex 05, (2) METIS, UMR 7619 UPMC, CNRS, 4, pl. Jussieu, 75252 Paris cedex 05, (3) Université de Namur, Département de Géologie, 61 rue de Bruxelles, 5000 Namur, Belgique, (4) IEES, UMR 7618 UPMC, CNRS, 4, pl. Jussieu, 75252 Paris cedex 05, (5) Institut des Sciences de la Terre d'Orléans, INSU-CNRS-Université d'Orléans, Observatoire des Sciences de l'Univers en région Centre, Campus Géosciences, UMR 7327, 1A rue de la Férollerie, F45071 Orléans Cedex 2

Marine and lacustrine sedimentary organic matter is often dominated by algal-bacterial production. Its nitrogen isotopic composition ($\delta^{15}\text{N}_{\text{org}}$) is frequently used to reconstruct biogeochemical processes involved in the nitrogen cycle, such as N utilization by organisms (e.g. Altabet et al., 1995), denitrification and diagenesis processes (e.g. Altabet et al., 1995; Sebilo et al., 2003; Gálman et al., 2009) or to evidence N sources variability (e.g. Hodell and Schelske, 1998; Vreca and Muri, 2006). However, all these parameters and processes make N isotopic signals in marine and lacustrine environments often very complex to interpret. After pioneer studies, Mariotti et al. (1981), Austin and Vitousek (1998), Amundson et al. (2003), Swap et al. (2004), and Liu and Wang (2008) have shown that the $\delta^{15}\text{N}_{\text{org}}$ of modern or quaternary terrestrial plants seem to be positively correlated with temperature and negatively correlated with precipitations. Therefore, $\delta^{15}\text{N}_{\text{org}}$ of terrestrial OM might be a better record for paleoclimatic studies than $\delta^{15}\text{N}_{\text{org}}$ of sedimentary OM dominated by algal-bacterial production. Recently, promising organic nitrogen isotopic data ($\delta^{15}\text{N}_{\text{org}}$) have been published on lignites from the Dieppe-Hampshire Basin (Paleocene-Eocene transition, Normandy (Storme et al., 2012). Authors suggest that the $\delta^{15}\text{N}_{\text{org}}$ recorded local paleoclimatic and paleoenvironmental conditions. Following these results, the aim of this work is to test the use of stable nitrogen isotopes in terrestrial OM as a new paleoclimatic marker for pre-quaternary geological series. Does $\delta^{15}\text{N}_{\text{org}}$ constitute a valuable tool to reconstruct past climates? What are the limits in the use of this proxy and possible methodological bias related to organic sources or diagenetic processes? To address these questions, $\delta^{15}\text{N}_{\text{org}}$ must be measured in samples from periods associated with large and well documented climate change. We therefore selected a Liassic continental sedimentary succession from Taskomirsay, Kazakhstan. This succession is rich in dispersed OM and wood fragments allowing accurate N isotopes measurements. Preliminary results on $\delta^{13}\text{C}_{\text{org}}$ and palynology suggest that the Pliensbachian/Toarcian transition is recorded at the top of the sedimentary succession. This transition has been studied for a long time since it is characterized by one of the most important global environmental and climatic change of the Phanerozoic time (Jenkyns, 1988; Hermoso et al., 2012). We are therefore testing the paleoclimatic "proxy" potential of $\delta^{15}\text{N}_{\text{org}}$ for this time interval by comparing the $\delta^{15}\text{N}_{\text{org}}$ signal with other indicators more classically used for paleoclimate studies. We have also investigated the influence of differences in organic sources and of early diagenesis on the $\delta^{15}\text{N}_{\text{org}}$ variations.