

Augmenting an operational forecasting system for the North and Baltic Seas by in situ T and S data assimilation

Svetlana Losa (1), Sergey Danilov (1), Jens Schröter (1), Lars Nerger (1), Silvia Maßmann (2), and Frank Janssen (2)

(1) Alfred Wegener Institute for Polar and Marine Research, Climate System, Bremerhaven, Germany
(Svetlana.Losa@awi.de), (2) Federal Maritime and Hydrographic Agency, Hamburg, Germany

In order to improve the hydrography forecast of the North and Baltic Seas, the operational circulation model of the German Federal Maritime and Hydrographic Agency (BSH) has been augmented by a data assimilation (DA) system. The DA system has been developed based on the Singular Evolution Interpolated Kalman (SEIK) filter algorithm (Pham, 1998) coded within the Parallel Data Assimilation Framework (Nerger et al., 2004, Nerger and Hiller, 2012). Previously the only data assimilated were sea surface temperature (SST) measurements obtained with the Advanced Very High Resolution Radiometer (AVHRR) aboard NOAA's polar orbiting satellites. While the quality of the forecast has been significantly improved by assimilating the satellite data (Losa et al., 2012, Losa et al., 2014), assimilation of in situ observational temperature (T) and salinity (S) profiles has allowed for further improvement. Assimilating MARNET time series and CTD and Scanfish measurements, however, required a careful calibration of the DA system with respect to local analysis. The study addresses the problem of the local SEIK analysis accounting for the data within a certain radius. The localisation radius is considered spatially variable and dependent on the system local dynamics. As such, we define the radius of the data influence based on the energy ratio of the baroclinic and barotropic flows.

D. T. Pham, J. Verron, L. Gourdeau, 1998. Singular evolutive Kalman filters for data assimilation in oceanography, *C. R. Acad. Sci. Paris, Earth and Planetary Sciences*, 326, 255–260.

L. Nerger, W. Hiller, J. Schröter, 2004. PDAF - The Parallel Data Assimilation Framework: Experiences with Kalman Filtering, In: Zwiefelhofer, W., Mozdzynski, G. (Eds.), *Use of high performance computing in meteorology: proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology*. Singapore: World Scientific, Reading, UK, 63–83.

L. Nerger, W. Hiller, 2012. Software for Ensemble-based Data Assimilation Systems —Implementation Strategies and Scalability, *Computers and Geosciences*, 55, 110-118.

S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2012. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Inference about the data. *Journal of Marine Systems*, 105–108, 152–162.

S. N. Losa, S. Danilov, J. Schröter, L. Nerger, S. Maßmann, F. Janssen, 2014. Assimilating NOAA SST data into the BSH operational circulation model for the North and Baltic Seas: Part.2 Sensitivity of the forecast's skill to the prior model error statistics. *Journal of Marine Systems*, 129, 259–270.