

Promises and pitfalls of estimating CO₂ fluxes from space-based measurements

Sourish Basu (1), Sander Houweling (2), and André Butz (3)

(1) NOAA ESRL, Boulder, CO, USA (sourish.basu@noaa.gov), (2) SRON Netherlands Institute for Space Research, The Netherlands (S.Houweling@uu.nl), (3) IMK-ASF, Karlsruhe Institute of Technology, Germany (andre.butz@kit.edu)

Atmospheric flux inversions, which use observed concentration gradients of atmospheric CO₂ to infer its surface sources and sinks, are presently limited by the surface observation network. The current network is sparse near several areas with large surface exchange of carbon, such as the Tropics and the oceans. Present (GOSAT) and future (OCO-2, CarbonSat, GOSAT II, TanSat) satellite missions hope to make up for this sparsity by providing total column CO₂ (XCO₂) measurements globally.

I will show with examples that satellite missions can indeed provide surface flux information over under-sampled areas such as the Tropics and the Boreal region. However, the increased spatial sampling density and coverage come at some cost: satellite-based XCO₂ measurements are less accurate than in situ measurements, have systematic biases correlated over thousands of kilometers, have a much higher data volume than what most inversion systems are geared to handle, and are generally trying to measure a very small signal on top of a very large background. I will show how each of these can be a killer for atmospheric inversions, with strategies for separating robust results from unrealistic flux estimates, and possible ways in which future CO₂-sensing satellites could minimize the impact of these pitfalls. In the end, remote sensed XCO₂ has the potential to add to our knowledge of surface exchange of CO₂, but is not a silver bullet to overcome all the limitations of current in situ observations.