

Sensitivity analysis of the GNSS derived Victoria plate motion

João Apolinário, Rui Fernandes, and Machiel Bos
SEGAL (UBI/IDL), R. Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal

Fernandes et al. (2013) estimated the angular velocity of the Victoria tectonic block from geodetic data (GNSS derived velocities) only.. GNSS observations are sparse in this region and it is therefore of the utmost importance to use the available data (5 sites) in the most optimal way. Unfortunately, the existing time-series were/are affected by missing data and offsets. In addition, some time-series were close to the considered minimal threshold value to compute one reliable velocity solution: 2.5-3.0 years.

In this research, we focus on the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) by extending the used data-span: Fernandes et al. (2013) used data until September 2011. We also investigate the effect of adding other stations to the solution, which is now possible since more stations became available in the region.

In addition, we study if the conventional power-law plus white noise model is indeed the best stochastic model. In this respect, we apply different noise models using HECTOR (Bos et al. (2013), which can use different noise models and estimate offsets and seasonal signals simultaneously. The seasonal signal estimation is also other important parameter, since the time-series are rather short or have large data spans at some stations, which implies that the seasonal signals still can have some effect on the estimated trends as shown by Blewitt and Lavelle (2002) and Bos et al. (2010). We also quantify the magnitude of such differences in the estimation of the secular velocity and their effect in the derived angular velocity.

Concerning the offsets, we investigate how they can, detected and undetected, influence the estimated plate motion. The time of offsets has been determined by visual inspection of the time-series. The influence of undetected offsets has been done by adding small synthetic random walk signals that are too small to be detected visually but might have an effect on the estimated trend (Williams 2003, Langbein 2012).

Finally, our preferable angular velocity estimation is used to evaluate the consequences on the kinematics of the Victoria block, namely the magnitude and azimuth of the relative motions with respect to the Nubia and Somalia plates and their tectonic implications.

References

Agnew, D. C. (2013). Realistic simulations of geodetic network data: The Fakenet package, *Seismol. Res. Lett.*, 84, 426-432, doi:10.1785/0220120185.

Blewitt, G. & Lavelle, D., (2002). Effect of annual signals on geodetic velocity, *J. geophys. Res.*, 107(B7), doi:10.1029/2001JB000570.

Bos, M.S., R.M.S. Fernandes, S. Williams, L. Bastos (2012) Fast Error Analysis of Continuous GNSS Observations with Missing Data, *Journal of Geodesy*, doi: 10.1007/s00190-012-0605-0.

Bos, M.S., L. Bastos, R.M.S. Fernandes, (2009). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series, *J. of Geodynamics*, j.jog.2009.10.005.

Fernandes, R.M.S., J. M. Miranda, D. Delvaux, D. S. Stamps and E. Saria (2013). Re-evaluation of the kinematics of Victoria Block using continuous GNSS data, *Geophysical Journal International*, doi:10.1093/gji/ggs071.

Langbein, J. (2012). Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker-random-walk models, *Journal of Geodesy*, Volume 86, Issue 9, pp 775-783,

Williams, S. D. P. (2003). Offsets in Global Positioning System time series, *J. Geophys. Res.*, 108, 2310, doi:10.1029/2002JB002156, B6.