

Using AQUACROP to model the impacts of future climates on crop production and possible adaptation strategies in Sardinia and Tunisia

Neil Bird (1), Sihem Benabdallah (2), Nadine Gouda (3), Franz Hummel (3), Isabelle La Jeunesse (4), Swen Meyer (5), Antonino Soddu (6), and Susanne Woess-Gallasch (1)

(1) Joanneum Research, Elisabethstr. 18 / 2 OG, A-8010 Graz, Austria, (2) Centre de Recherche et des Technologies des Eaux (CERTE), BP 273, 8020 Soliman, (3) Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR) Muenchener Str 20, 82234 Wessling, Germany, (4) Université François-Rabelais de Tours, 3 rue des Tanneurs, 37041 TOURS Cedex 01, France, (5) Ludwig-Maximilians-Universitaet Muenchen, Department of Geography, Luisenstraße 37, 80333 München, Germany, (6) Agenzia per la Ricerca in Agricoltura – SardegnaDIRVE (AGRIS) Loc. BONASSAI, 07100 Sassari Italy

A work package in the FP-7 funded CLIMB Project - Climate Induced Changes on the Hydrology of Mediterranean Basins Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modeling System had the goal of assessing socioeconomic vulnerability in two super-sites in future climates (2040-2070). The work package had deliverables to describe of agricultural adaptation measures appropriate to each site under future water availability scenarios and assess the risk of income losses due to water shortages in agriculture. The FAO model AQUACROP was used to estimate losses of agricultural productivity and indicate possible adaptation strategies. The presentation will focus on two interesting crops which show extreme vulnerability to expected changes in climate; irrigated lettuce in Sardinia and irrigated tomatoes in Tunisia. Modelling methodology, results and possible adaptation strategies will be presented.