

A ^{15}N tracing method to quantify N_2O pathways from terrestrial ecosystems

Christoph Müller (1,2), Ronnie Laughlin (3), Oliver Spott (4), and Tobias Rütting (5)

(1) Justus-Liebig University Giessen, Department of Plant Ecology, Giessen, Germany

(Christoph.Mueller@bot2.bio.uni-giessen.de), (2) School of Biology and Environmental Science, University College Dublin, Dublin, Ireland, (3) Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, Northern Ireland, (4) Department of Soil Physics, Helmholtz Centre for Environmental Research – UFZ, Halle(Saale), Germany, (5) Department of Earth Sciences, University of Gothenburg, Sweden

To quantify N_2O production pathways from terrestrial ecosystems a ^{15}N tracing model was developed. The model is based on previous tracing models to quantify gross nitrogen (N) transformations including soil nitrite (NO_2^-) dynamics. Four N_2O pathways are considered in the model which are associated with NO_2^- subpools: i) reduction of NO_2^- associated with nitrification ($\text{NO}_2^-_{nit} - \text{N}_2\text{O}_{nit}$), ii) reduction of NO_2^- associated with denitrification ($\text{NO}_2^-_{den} - \text{N}_2\text{O}_{den}$), iii) reduction of NO_2^- associated with organic N (N_{org}) oxidation ($\text{NO}_2^-_{org} - \text{N}_2\text{O}_{org}$), and iv) codenitrification (N_2O_{cod}), a hybrid reaction where one N atom in N_2O originates from organic N and the other from $\text{NO}_2^-_{den}$. The reaction kinetics and emission notations are based on first-order approaches. For all four N_2O sub-pools specific reduction rates to N_2 were implemented. Parameters are optimized with the Metropolis algorithm (a Monte Carlo technique). A data set from an old grassland was used to test the ^{15}N tracing tool. Results show that on average over a 12 day period N_2O_{nit} , N_2O_{den} , N_2O_{org} and N_2O_{cod} contributed by 9%, 20%, 54% and 18% to the total N_2O emission, respectively. Alternative techniques based on analytical approaches, which consider three N_2O emission pathways, provide similar results. For the first time four N_2O emission pathways, including a hybrid-reaction, can simultaneously be quantified. The analysis for the old grassland study showed that heterotrophic processes related to organic N turnover are the prevailing pathway for N_2O production. The underlying NO_2^- and N_2O reduction kinetics are in agreement with microbial measurements and the calculated $\text{N}_2/\text{N}_2\text{O}$ ratios are in the expected range. The model provides a framework for the development of more realistic representations of soil N cycling in ecosystem models.