

An investigation into shallow system dynamics during strombolian activity at Mt Etna using UV cameras, seismic data and modelling of gas flow

Tom D. Pering (1), Giancarlo Tamburello (2), Andrew J. S. McGonigle (1,3), Alessandro Aiuppa (2,3), Mike R. James (4), Steve J. Lane (4), Mariangela Sciutto (5), Andrea Cannata (5), and Domenico Patanè (5)

(1) University of Sheffield, Department of Geography, United Kingdom (ggp12tdp@sheffield.ac.uk), (2) DiSTeM, Università di Palermo, Palermo, Italy, (3) Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Palermo, Palermo, Italy, (4) Lancaster Environment Centre, Lancaster University, Lancaster, UK, (5) Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo, Catania, Italy

During rapid strombolian activity observed at the Bocca Nuova (BN) crater of Mt Etna on the 27th July 2012, ultra-violet cameras were used to measure SO₂ emissions from the active vent over \approx 30 minutes of activity. This resulted in the first determination of SO₂ masses for strombolian activity at Etna, with individual bursts of \approx 0.1 – 14 kg. By combining this with Multi-GAS measurements of gas ratios in the BN plume, we estimate a total gas mass for individual bursts of \approx 0.2 – 165 kg. By calculating the degassing paths of typical H₂O and CO₂ contents for Etnaean magmas and matching this with the measured CO₂/SO₂ ratio of \approx 3 we estimate that the depth that gas decouples from the melt at 0.5 – 6.2 km. Statistical analysis of the repose time between bursts showed an average interval of \approx 3 – 5 s with a maximum of \approx 45 s. Plotting the repose time following bursts against their gas masses indicates that larger events were not followed rapidly by a subsequent event. The subsequent event also always had a significant emission speed, i.e. following larger events there was a minimum wait period and minimum emission speed for the subsequent burst. This could be the result of a number of different processes or effects: 1) bubble coalescence and the consequent faster rise of larger gas masses, 2) the coalescence of ascending Taylor bubbles (slugs), 3) an atmospheric transport effect related to changes in magma level, and 4) the partial collapse of a foam or a form of trap-and-release mechanism. Subsequent analysis of the fluid dynamics was performed using several numerical models, including: Del Bello et al. (2012) to estimate magma and conduit parameters, Seyfried and Freundt (2000) with Llewellyn et al. (2012) to estimate where transition to full slug flow occurs, and Noguiera et al. (2006) for the wake length of slugs. The use of these models in combination with the James et al. (2008) dynamic slug model suggests that coalescence between gas masses, reasonably assumed to be slugs, occurs more frequently in the upper \approx 100 m of the conduit, where gas expansion becomes significant. The depth at which transition to slug flow occurs is similarly shallow. Comparison of individual burst events and a range of lags with filtered seismic displacement data from the EBCN seismic station of the INGV network, demonstrated no correlation between maximum peak-to-peak amplitude in the vertical component. Although, a tentative (due to the discrete 10 minute period used with omission of anomalous data) correlation of $r^2 = 0.88$ exists for the sum of burst mass in a minute against equivalent RMS when offset by a lag of 2 minutes. Considering the approximate rise speed of gas masses, the location of gas at the time of correlation is estimated to be a depth of $< \approx 250$ m.