

Tailward retreat of oscillatory flows

Evgeny V. Panov (1), Rumi Nakamura (1), Wolfgang Baumjohann (1), and Marina V. Kubyshkina (2)

(1) Space Research Institute, Austrian Academy of Sciences, Graz, Austria (evgeny.panov@oeaw.ac.at), (2) St. Petersburg State University, St. Petersburg, Russia.

On 23 March 2009 between 6:00 and 6:40 UT three THEMIS probes (P3-P5) were located at $X=-11$ Earth radii (Re), while P1, and P2 were at $X=-14$ Re downtail. Inner probes P3-P5 started to observe oscillatory flow braking with plasma sheet dipolarization at about 6:04 UT. About five minutes later the dipolarization expanded tailward and reached the outer probes P1, and P2. At this time P1, and P2 started to observe oscillatory braking, whereas at P3-P5 the oscillatory flows substantially decreased or almost ceased. The flow oscillation period was about 3.5 minutes at P3-P5, and about 5 minutes at P1, and P2. A similar period difference was detected in the Pi2 pulsations by the ground-based THEMIS magnetometer array. During the time when the dipolarization expanded tailward, the auroral activity gradually moved northward, as was observed by the all-sky camera at Rankin Inlet. We interpret these observations as tailward retreat of the oscillating flux tube during oscillatory flow braking due to tailward expansion of plasma sheet dipolarization.