

Ground-based microwave remote sensing of temperature inversions in the Bergen valley, Norway

Tobias Wolf (1), Igor Esau (1), and Joachim Reuder (2)

(1) Nansen Environmental and Remote Sensing Center, Bergen, Norway (tobias.wolf@nersc.no), (2) Geophysical Institute, University of Bergen, Bergen, Norway (joachim.reuder@gfi.uib.no)

The temperature profiles in the urbanized Bergen valley, Norway, are characterized by wintertime temperature inversions, which have a strong impact on the surface layer air quality in the city. We present the results from two years of vertical temperature profile measurements obtained with the ground-based microwave temperature profiler MTP-5HE and show the advantages of ground-based remote sensing with this instrument for the monitoring of atmospheric temperature inversions.

From a subset of the final, filtered dataset we found that the mean difference between temperatures measured with the MTP-5HE and an automatic meteorological station (AMS) on a nearby mountain was as low as -0.03 ± 0.78 K during inversion free conditions and -0.06 ± 0.71 K during ground-based temperature inversions. The only selection criterion for this subset was a wind speed of more than 5 m/s and to ensure comparability between the location of the AMS and the central valley atmosphere.

We found two regimes of ground-based inversions: Non-persistent inversions lasting shorter than 2 hours that are mostly thinner than 100 m and more persistent inversions often reaching 270 m above sea level. The height of the shorter inversions was consistent with the maximum height of inversions found in a previous study based on tethersonde measurements. Ground-based inversions mostly occurred during situations characterized by weak winds in the ERA-Interim reanalysis, to a large degree independent from wind direction. A distinct south-easterly tail in the ERA-Interim wind distribution with wind speeds as high as 16 m/s might have been connected to a wake effect from a nearby mountain. The strong channeling effect within the valley that was also found in previous studies was evident.

The ground-based remote sensing was particularly useful for the monitoring of elevated temperature inversions between 170 m and 720 m above sea level. This kind of inversions has not been observed in this valley before. They mostly occurred during nighttime in spring and summer with northerly low-level winds in ERA-Interim and only a low correlation in wind direction between the low-level and the 850hPa ERA-Interim winds. Such wind conditions were unusual for the region under study and might generally result in a valley-circulation favoring the occurrence of elevated inversions under conditions with weak enough convection and warm air advection.