

Aerosol-cloud interactions over major urban clusters of China using MODIS satellite data

Stavros Stathopoulos (1), Konstantinos Kourtidis (1), Georgia Alexandri (1), Aristeidis Georgoulias (1,2), and Pucai Wang (3)

(1) School of Engineering, Demokritus University of Thrace, Lab. of Atmospheric Pollution and Pollution Control Engineering of Atmospheric Pollutants, Dept. of Environmental Engineering, Xanthi, Greece, (2) Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece, (3) Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Urban clusters are a prominent political and economic issue in China. Increased numbers of cities of different sizes and intensive urbanization characterize these regions, which extend over hundreds of kilometers. We study here the interactions between aerosols and clouds under different synoptic regimes over major urban clusters of China, using a decade (2003 - 2013) of MODIS observations from Terra and Aqua satellites. The relationships which are studied are mainly between the aerosol optical depth at 550 nm (AOD550) and cloud cover (CC), cloud water path (CWP) and water vapour (WV). The region of China was separated in 5 climatic zones which are primarily influenced by the Asian monsoon systems and the Tibetan Plateau. Over all urban clusters and in all seasons, CC is found to increase with AOD550. On the other hand, CWP-AOD550 and WV-AOD550 relationships appear more complicated and are discussed also in view of their impact on CC.

This research has been financed by EPAN II and PEP under the national action “Bilateral, multilateral and regional R&T cooperations” (AEROVIS Sino-Greek project).