

CO₂ Capillary-Trapping Processes in Deep Saline Aquifers

Naum I. Gershenzon, Mohamadreza Soltanian, Robert W. Ritzi Jr, and David F. Dominic

Wright State University, Department of Earth and Environmental Sciences, 3640 Col. Glenn Hwy., Dayton, OH, United States
(naum.gershenzon@wright.edu)

The idea of reducing the Earth's greenhouse effect by sequestration of CO₂ into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO₂ leakage require a detailed modeling of the migration and distribution of CO₂ in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation.

The physical mechanism of CO₂ trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO₂ may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO₂ trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO₂, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO₂).

Geological heterogeneities essentially affect the dynamics of a CO₂ plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO₂ plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes.

References

- [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in *Facies Models Revisited*, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85–170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla
- [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, *Water Resources Research*, v. 46, W04515.