Geophysical Research Abstracts Vol. 16, EGU2014-4078, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

Evaluation of reduced power spectra from three-dimensional k-space

Michael von Papen and Joachim Saur

University of Cologne, Intitute for Geophysics & Meteorology, Köln, Germany (vonpapen@geo.uni-koeln.de)

We present a new tool to evaluate one dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in k-space. This enables us to calculate the power spectra as they are measured in spacecraft frame for any given measurement geometry assuming Taylor's frozen-in approximation. It is possible to seperately calculate the diagonal elements of the spectral tensor and also to insert additional, non-turbulent energy in k-space (e.g. mirror mode waves). Given a critically balanced turbulent cascade with $k_{\parallel} \sim k_{\perp}^{\alpha}$, we explore the implications on the spectral form of the PSD and the functional dependence of the spectral index κ on the field-to-flow angle θ between plasma flow and background magnetic field. We show that critically balanced turbulence develops a θ -independent cascade with the spectral slope of the perpendicular cascade $\kappa(\theta=90^{\circ})$. This happens at frequencies $f > f_{max}$, where $f_{max}(L,\alpha,\theta)$ is a function of outer scale L, critical balance exponent α and field-to-flow angle θ . The resulting spectra resemble the θ -independent spectral form reported by G-rappin & G-muller (2010). We also discuss potential damping terms acting on the K-space distribution of energy and their effect on the PSD. Further, we show that the functional dependence $\kappa(\theta)$ as found by G-rapping and their effect on the PSD. Further, we show that the functional dependence $\kappa(\theta)$ as found by G-rapping and their effect on the PSD.