

Hydrodynamic fingering instability induced by a precipitation reaction

Anne De Wit (1) and Yuichiro Nagatsu (2)

(1) Université Libre de Bruxelles (ULB), Brussels, Belgium (adewit@ulb.ac.be), (2) Tokyo University of Agriculture and Technology, Tokyo, Japan (nagatsu@cc.tuat.ac.jp)

We experimentally demonstrate that a precipitation reaction at the miscible interface between two reactive solutions can trigger a hydrodynamic instability due to the build-up of a locally adverse mobility gradient related to a decrease in permeability. The precipitate results from an $A+B \rightarrow C$ type of reaction when a solution containing one of the reactant is injected into a solution of the other reactant in a porous medium or a Hele-Shaw cell. Finger-like precipitation patterns are observed upon displacement, the properties of which depend on whether A displaces B or vice-versa. A mathematical modeling of the underlying mobility profile in the cell reconstructed on the basis of one-dimensional reaction-diffusion concentration profiles confirms that the instability originates from a local decrease in mobility driven by the precipitation. Nonlinear simulations of the related reaction-diffusion-convection model reproduce the properties of the instability observed experimentally. In particular, the simulations suggest that differences in diffusivity between A and B may contribute to the asymmetric characteristics of the fingering precipitation patterns.