

Kilometre- scale remote sensing of light attenuation and euphotic depths in an optically complex shelf sea.

Alex Cunningham and Catherine Mitchell

University of Strathclyde, Physics, Glasgow, United Kingdom (a.cunningham@strath.ac.uk, 0141 552 2891)

A combination of radiative transfer modelling and in situ measurements was used to assess the performance of remote sensing algorithms based on the Quasi-Analytical approach of Lee et al. (2005) in the Irish Sea. For modelled data generated using locally determined specific inherent optical properties and constituent concentrations, the absorption coefficient, $a(\lambda)$, the backscattering coefficient $bb(\lambda)$ and the attenuation coefficient for downward irradiance $Kd(\lambda)$ in six wavebands between 412 nm and 667 nm were recovered with mean percentage errors below 3% and standard deviations of around 6%. When compared to in situ data, the algorithms tended to overestimate $a(\lambda)$ and underestimate $bb(\lambda)$, but the practical difficulty of measuring optical properties accurately in turbid waters appeared to be a contributing factor. Values of $Kd(\lambda)$, however, were highly correlated with those measured in situ, with regression slopes in the best-performing bands of 1.05 at 442 nm ($r^2=0.91$) and 0.92 at 488 nm ($r^2=0.96$). A strong linear relationship ($r^2>0.95$, mean relative difference 5.4%) was found between $Kd(490)$ and the reciprocal of the depth of the midpoint of the euphotic zone ($z10\% \text{ PAR}$). This allowed euphotic depths to be predicted by remote sensing with an RMS error of 1.25 m over the 2.5–25.0 m range covered by our data set. Application of this approach to a decade of satellite data made it possible to observe dynamic changes in the optical characteristics of a complex shelf-sea region with spatial and temporal coverage that greatly exceeds that available from in situ observations, and to derive links between optical variability and mixing processes in the water column.