

The Role of Artificial Atmospheric CO₂ Removal in Stabilizing Earth's Climate

Katarzyna Tokarska and Kirsten Zickfeld

Simon Fraser University, Department of Geography, Burnaby, B.C, Canada (kbt2@sfu.ca)

Recent research showed that global mean temperature remains approximately constant for several centuries after complete cessation of CO₂ emissions, while global mean thermosteric sea level continues to rise. This implies that a net artificial removal of CO₂ from the atmosphere may be necessary to decrease the atmospheric CO₂ concentrations more rapidly and bring the climate system components to their previous states on human timescales.

The purpose of this study is to explore the reversibility of climate responses to a range of realistic CO₂ emission scenarios, which follow a gradual transition from fossil-fuel driven economy to a zero-emission energy system with implementation of negative CO₂ emissions, using the University of Victoria Earth System Climate Model of intermediate complexity (UVic ESCM 2.9). The CO₂ emission pathways were designed to meet constraints related to the implementation of negative emission technologies derived from the integrated assessment literature.

Our simulations show that while it is possible, in principle, to revert the global mean temperature after a phase of overshoot, the thermosteric sea level rise is not reversible on human timescales for the range of emission scenarios considered. During the negative emission phase, CO₂ is released from the natural (terrestrial and marine) carbon sinks, which diminishes the efficiency of negative emissions implemented. In addition, spatial changes of vegetation distribution patterns are not entirely reversible on human timescales.

We suggest that while negative emissions could potentially stabilize the global mean temperature at a desired level, such technology does not supersede reductions in fossil fuel emissions, as the artificial CO₂ capture at large scale has many limitations and is unable to stabilize other climate system components (e.g. sea level) at desired levels.