Geophysical Research Abstracts Vol. 16, EGU2014-4398, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

Recognizing seiche and tsunami effects in lake sediments

Shmuel Marco (1), Ian G. Alsop (2), Oded Katz (3), and Yehoshua Dray (4)

 Tel Aviv University, Geophysics, Tel Aviv, Israel (shmulikm@tau.ac.il, 972-3-6409282), (2) Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, UK, (3) Geological Survey of Israel, Jerusalem, Israel, (4) Restoration of Ancient Technology, Binyamina, Israel

The lacustrine 70-15-ka Lisan Formation outcropping around the Dead Sea contains superb examples of slump folds formed in water depths of <100 m. New structural data from individual horizons demonstrate that several of these gravity-driven slumps are coaxially refolded and reworked by folds and thrusts verging both back up and then down the palaeoslope. The uppermost folds are often truncated. A progressive increase in reworking and shearing is developed up through the folded sediment, culminating in an upward-finning breccia layer that is capped by a thin, typically graded horizon of undeformed fine-grained clasts. We interpret this sequence as a seiche-related deformation. Based on the similarity of the structures in the Lisan Formation and on additional supporting observations we interpret zigzag-shaped sand injections in artificial lake deposits on the Eastern Mediterranean shore as evidence for a tsunami, possibly associated with the earthquake of 25 November 1759. If this interpretation is correct it supports the hypothesis that onshore Dead Sea Fault earthquakes can trigger tsunamis in the Mediterranean.