

Badlands: Regolith, Forms and Processes. A review of the scientific research in Spain

Estela Nadal-Romero (1) and Artemi Cerdà (2)

(1) Departamento de Geografía. Universidad de Zaragoza. Pedro Cerbuna 12. 50009 Zaragoza, Spain. estelanr@unizar.es, (2) SEDER Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain. artemio.cerdà@uv.es / www.soilerosion.eu,

Badlands are usually defined as 'intensely dissected natural landscapes where vegetation is sparse or absent and which are useless for agriculture' (Bryan and Yair, 1982). Badlands are widespread around the world (Nadal-Romero, 2007; Dickie and Parsons, 2012; Haregeweyn et al., 2012). In Spain due to the climatic and geological conditions badlands are widespread. Badlands research has national and foreign pioneers (Harvey, 1982; Clotet et al., 1988; Alexander and Calvo, 1990; Calvo et al., 1991; Alexander et al., 1994). Almería, Granada, Murcia, Alicante, the Ebro Valley, and the Pyrenees are good examples of the variety and diversity of badlands in Spain (García-Ruiz and López-Bermúdez, 2009).

The research on badlands paid attention to the infiltration and runoff generation (Cerdà, 1999a), piping (Romero-Díaz et al., 2011), the role of parent material on the regolith morphology (Regués, 1995; Cerdà, 1998b) and the soil development (Regués, 1993), and the interaction of the vegetation and soil erosion (Cerdà and García Fayos, 1997; Solé et al., 1997) vegetation varied, whereas the percentage of studies on erosion rates increased steadily over time. During the 90s badlands research was flowering and research on badlands developments, forms and soil physical properties influence was done. The 00's were a period with research focused on processes (infiltration, runoff and erosion) but in general the interest on badland decreased. However, badlands are intensively researched in the Ebro Valley (Nadal-Romero et al., 2007; 2008; Nadal-Romero and Regués; 2009; 2010) and new research is being developed on degraded soils following the knowledge found on badlands (Cerdà, 2007; García Fayos et al., 2010).

The future is moving to study vegetation dynamics and badlands reclamation, the effect of climatic change in badland areas, and erosion processes and rates (Nadal-Romero et al., 2013). The use of new non-invasive technologies (remote sensing, Terrestrial Laser Scanner, photogrammetry) helps to develop new research scenarios.

Acknowledgements

The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 project 603498 supported this research.

References

Alexander, RW., Calvo, A. 1990. The influence of lichens on slope processes in some Spanish badlands. In: Vegetation and erosion. Processes and environments (Thorne, J.B., eds.). John Wiley & Sons, Chichester, pp. 385-398.

Alexander, RW., Harvey, AM., Calvo, A., James, PA., Cerdà, A. 1994. Natural stabilization mechanisms on badland slopes: Tabernas, Almería, Spain. In: Environmental change in drylands: Biogeographical and geomorphological perspectives (Millington, C., Pye, K., eds.). Wiley, Chichester, pp. 85-111.

Bryan, RB., Yair, A. 1982. Badland Geomorphology and piping. GeoBooks, Norwich, pp. 408.

Calvo, A., Harvey, AM., Paya, J., Alexander, R. 1991. A response of badland surfaces in south east Spain to simulated rainfall. Cuaternario y Geomorfología, 5: 3-14.

Cerdà, A., García-Fayos, P. 1997. The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology, 18, 77-90.

Cerdà, A. 1999a. Seasonal and spatial variations in infiltration rates in badland surfaces under Mediterranean climatic conditions. Water Resources Research, 35 (1) 319-328.

Cerdà, A. 1999b. Parent material and vegetation affect soil erosion in eastern Spain. Soil Science Society of America Journal, 63, 362-368.

Cerdà, A. 2007. Soil water erosion on road embankments in eastern Spain. Science of the Total Environment, 378, 151-155.

Clotet, N., Gallart, F., Balasch, J. 1988. Medium term erosion rates in a small scarcely vegetated catchment in the Pyrenees. *Catena Supplement*, 13: 37-47.

Desir, G., Marin, C. 2007. Factors controlling the erosion rates on a semiarid zone (Bardenas Reales, NE Spain). *Catena*, 71, 31-44.

García-Fayos, P., Bochet, E., Cerdà, A. 2010. Seed removal susceptibility through soil erosion shapes vegetation composition. *Plant and Soil* 334: 289–297.

García-Ruiz, JM., López-Bermúdez, F. 2009. La erosión del suelo en España. Sociedad Española de Geomorfología, Zaragoza, pp. 441.

Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J., Moeyersoons, J. 2013. Assessing the performance of a Spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. *Land Degradation & Development* 24, 188-204. DOI 10.1002/ldr.1121

Harvey, A. 1982. The role of piping in the development of badlands and gully systems in southeast Spain. In: Badland geomorphology and piping (Bryan, RB., Yair, A., eds.). GeoBooks, Norwich, pp. 317-336.

Nadal Romero, E., Regués, D., Martí-Bono, C., Serrano-Muela, P., 2007. Badland dynamics in the Central Pyrenees: temporal and spatial patterns of weathering processes. *Earth Surface Processes and Landforms*, 32, 888-904.

Nadal Romero, E., Latron, J., Lana-Renault, N., Serrano-Muela, P., Martí-Bono, C., Regués, D. 2008. Temporal variability in hydrological response within a small catchment with badland areas, Central Pyrenees. *Hydrological Science Journal*, 53, 629-639.

Nadal-Romero, E., Torri, D., Yair, A. 2013. Updating the badlands experience. *Catena*, 106: 1-3.

Nadal Romero, E., Regués, D. 2009. Detachment and infiltration variations as consequence of regolith development in a Pyrenean badland system. *Earth Surface Processes and Landforms*, 34 (6): 824-838.

Nadal Romero, E., Regués, D. 2010. Geomorphological dynamics of subhumid mountain badland areas - weathering, hydrological and suspended sediment transport processes: A case study in the Araguas catchment (Central Pyrenees) and implications for altered hydroclimatic regimes. *Progress in Physical Geography* 34 (2): 123-150.

Regués D., Llorens P., Pardini G., Pini R., Gallart F. 1993. Physical weathering and regolith behaviour in a high erosion rate badland area at the Pyrenees: research design and first results. *Pirineos*, 141-142, 63-8.

Regués D., Pardini G., Gallart F. 1995. Regolith behaviour and physical weathering of clayey mudrock as dependent on seasonal weather conditions in a badland area at Vallcebre, Eastern Pyrenees. *Catena*, 25, 199-212.

Romero Díaz, A., Alonso Sarria, F., Sánchez Soriano, A. 2011. Influencia de los factores topográficos en los procesos de piping, Murcia (España). *Cuadernos de Investigación Geográfica*, 37, 41-66.

Solé, A., Calvo, A., Cerdà, A., Lázaro, R., Pini, R. & Barbero, J. 1997. Influences of micro-relief patterns and plant cover on runoff related processes in badlands from Tabernas (SE Spain). *Catena*, 31, 23-38.