

Evolutionary models of structural transfer zone in onshore and offshore areas, northwestern Taiwan

Kenn Ming Yang (1), Ching Yun Hsieh (1), Bo Iuan Chung (1), Jar Ben Wang (2), Hsin Hsiu Ting (2), Hui Ju Chuang (2), and Chang Jie Lee (2)

(1) National Cheng Kung University, Tainan, Taiwan, (2) Exploration and Development Research Institute, CPC, Taiwan, Miaoli, Taiwan

Structural transfer zones in the frontal part of a fold-and-thrust belt mark the end of segments of major thrusts and represent the lateral variation in magnitude of displacement, slip direction and style of fault-related structure. On the other hand, in the frontal part of a fold-and-thrust belt of in-sequence and ongoing development, all fault-related structures represent the initial features of the following structural evolution. During the latest stage of the Penglai orogeny in northwestern Taiwan, two sets of fault system developed separately as a series of NW-SE fold-thrust belts and E-W high-angle thrusts. In this study, we demonstrate three evolutionary models of structural transfer zone during the initial stage of different thrust development, in-sequence development of thrust-related folding, interaction between normal fault reactivation and in-sequence development of thrusts, and normal fault reactivation resulting in the inversion structures. We use a grid of seismic profile and well bore data to interpret subsurface structural geometry, build a three-dimensional structural mode, and integrate trishear modeling to analyze the structural evolution.

On the whole, three types of structural transfer zone can be identified based on their distinct development: 1. formation of the structural transfer zones in the inversion tectonic belt were controlled by the arrangement and linkage of early normal faults; 2. the continuity of fold geometry was first influenced by lateral variation in dip angle of low-angle thrust and in turn broken by high-angle transcurrent faulting, forming segmented fold structures during the late compression; and 3. slip along two parallel thrusts with opposite vergence and decreasing dip angle toward the transfer zone formed complex fault-related folds. The variation of P/S ratio along the strike of some thrusts also plays important role in shaping the features of the transfer zone.