

Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

Marcus Gutjahr (1), Louise Bordier (2), Eric Douville (2), Jesse Farmer (3), Gavin L. Foster (4), Ed Hathorne (1), Bärbel Hönißch (3), Damien Lemarchand (5), Pascale Louvat (6), Malcolm McCulloch (7), Johanna Noireaux (6), Nicola Pallavicini (8), Ilia Rodushkin (9), Philippe Roux (5,10), Joseph Stewart (4), François Thil (2), and Chen-Feng You (11)

(1) GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Geosystems, Kiel, Germany (mgutjahr@geomar.de)
(Authors apart from corresponding author are listed in alphabetical order), (2) Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL, UMR 8212), Domaine du CNRS, Avenue de la Terrasse, Bat 12,91198 Gif/Yvette, France, (3) Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University 61 Route 9W Palisades, NY 10964, U.S.A., (4) Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK, (5) Laboratoire d'Hydrologie et de Géochimie de Strasbourg, EOST, Université de Strasbourg et CNRS, 1 rue Blessig, 67084 Strasbourg, France, (6) Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, UMR CNRS 7154, 1 rue Jussieu, 75238 Paris Cedex 05, France, (7) ARC Centre of Excellence for Coral Reef Studies and School of Earth and Environment, The University of Western Australia, Crawley 6009, Australia, (8) Division of Geosciences, Luleå University of Technology, S-971 87 Luleå, Sweden, (9) ALS Scandinavia AB, Aurorum 10, SE-97775 Luleå, Sweden, (10) Biogéochimie des Ecosystèmes Forestiers, INRA, 54280 Champenoux, France, (11) Isotope Geochemistry Laboratory, Department of Earth Sciences, National Cheng Kung University, No 1 University Road, 701 Tainan, Taiwan

Boron consists of only of two isotopes with a relatively large mass difference ($\sim 10\%$). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in $\delta^{11}\text{B}$) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3].

This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate $\delta^{11}\text{B}$; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference $\delta^{11}\text{B}$ values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined $\delta^{11}\text{B}$ via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used.

Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median $\delta^{11}\text{B}$ by $\sim 0.1\text{‰}$ for both JCp-1 and JCt-1, while the mean $\delta^{11}\text{B}$ of all labs for both standards was lowered by 0.20‰ for JCp-1 and 0.15‰ for JCt-1, hence within uncertainty of the reported values. With the exception of one MC-ICPMS lab that provided significantly lower JCp-1 $\delta^{11}\text{B}$ data for unoxidised material (1.7‰ below median), the remaining JCp-1 results reproduced within $\pm 0.54\text{‰}$ for unoxidised ($n=21$) and $\pm 0.37\text{‰}$ for oxidised standards ($n=21$). The JCt-1 standards did not reproduce as well, resulting in a 2 s.d. of 1.0‰ for both unoxidised and oxidised powders ($n=21$) and in places the effect of oxidation appeared to be laboratory dependent. Exclusion of one MC-ICPMS lab resulted in an improved reproducibility of 0.52‰ ($n=18$) for oxidised JCt-1 material. The mean difference for the two standard materials in the respective labs (i.e. $\Delta\delta^{11}\text{B} = \text{mean } \delta^{11}\text{B}(\text{JCp-1}) - \text{mean } \delta^{11}\text{B}(\text{JCt-1})$) was $7.9 \pm 0.9\text{‰}$ for unoxidised ($n=7$) and $8.1 \pm 0.7\text{‰}$ for oxidised standards ($n=7$).

In this presentation emphasis will also be placed on distinguishing factors leading to increased/decreased

interlaboratory consistency during the preparation and analysis of biogenic carbonates for other isotopic systems.

References

- [1] Foster, G.L. et al. (2013) Chemical Geology 358: p. 1-14.
- [2] Okai, T. et al. (2002) Geostandards Newsletter 26: p. 95-99.
- [3] Inoue, M. et al. (2004) Geostandards and Geoanalytical Research 28: p. 411-416.