Magnetostratigraphic data from the Pignola-Abriola section (Southern Apennines, Italy): new constraints for the Norian/Rhaetian boundary

Matteo Maron (1), Giovanni Muttoni (2), Miriam Katz (3), Linda Godfrey (4), Mariachiara Zaffani (1), Angela Bertinelli (5), and Manuel Rigo (1)

(1) Department of Geosciences, University of Padua, Via Gradenigo 6, 35131, Padua, Italy (matteo.maron.1@studenti.unipd.it), (2) Department of Earth Sciences, University of Milan, Via Mangiagalli 34, 20133, Milan, Italy, (3) Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA, (4) Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ, 08854, USA, (5) Department of Physics and Geology, University of Perugia, Piazza Università 1, 06123, Perugia, Italy

New magnetostratigraphic data have been obtained from the Norian/Rhaetian boundary section of Pignola-Abriola (Southern Apennines, Italy), which consists in 60 m of basinal cherty limestones. A total of 10 magnetozones have been identified and calibrated with conodont and radiolarian biostratigraphy. The Pignola-Abriola section was correlated to the Newark APTS with a statistical method under the assumption that stratigraphic depth is a linear proxy of time. The section was slid aside the Newark APTS producing a total of 19 possible correlation options that were evaluated by linear regression of the age-depth tie points. Then, a student t-test was applied to the linear regression coefficients to isolate the most reliable correlation options. According to our best correlation option, the Pignola-Abriola section covers the interval from E13r (∼217 Ma) to E20r (∼205 Ma) in the Newark APTS.

The Norian/Rhaetian boundary based on the FAD of conodont Misikella posthernsteini and the base of the Proparvicingula moniliformis radiolarian Zone 1 at Pignola-Abriola (Giordano et al., 2010: Lethaia 43, 573–586) falls on the Newark APTS at ∼205.4 Ma within magnetozone E20r. The magnetostratigraphy of the Pignola-Abriola section has been successfully correlated to other Late Triassic magnetostratigraphic sections from the literature spanning the Norian/Rhaetian boundary (Steinbergkogel, Oyuklu, Brumano and Pizzo Mondello). Our magnetostratigraphic correlation reveals an apparent discrepancy in the first appearance of conodont Misikella posthernsteini at Pignola-Abriola and Steinbergkogel/Oyuklu. However, we infer that the forms attributed to M. posthernsteini at Steinbergkogel/Oyuklu are more similar to what we refer to as M. hernsteini/posthernsteini transition at Pignola-Abriola, a solution that virtually eliminates the discrepancy. Considering the taxonomic complexity of the M. hernsteini/posthernsteini lineage, we propose to place the Norian/Rhaetian boundary in correspondence of a marked negative shift of d^{13}C_{org} observed at Pignola-Abriola at ∼41.5 m (close to the FAD of M. posthernsteini), which, according to the correlation with the Newark APTS, would have an age of ∼205.6 Ma. According to this new definition of the Norian/Rhaetian boundary, the Rhaetian is ∼4.5 Myr-long.