

SST and terrestrial n-alkanes records in sediment of the Korean Plateau, East Sea (Japan Sea) during the last 400 kyr: Paleoceanographic and paleoclimatic implications

Sangmin Hyun (1), Yean Jee Suh (2), and Jin Kyung Kim (3)

(1) korea Institute of Ocean Science and Technology, Ansan, Korea (smhyun@kiost.ac), (2) Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA (suhye@mail.uc.edu), (3) korea Institute of Ocean Science and Technology, Ansan, Korea (jink92@kiost.ac)

SST variation was reconstructed using alkenones and their variation was compared with terrestrial n-alkanes signature from the sediment of the Korean Plateau, East Sea (Japan Sea) during the last 400 ka. SST variation showed glacial-interglacial time scale variation with a maximum temperature of 26 oC in MIS 7, and a minimum of 12 oC at MIS 2 and 6. The distribution of terrestrial n-alkanes signatures is characterized by the occurrence of high odd number predominance in most samples, however minor dominance of a specific compound (nC27 only) was the additional characteristic. Average Chain Length (ACL) and Carbon Preferences Index (ICP), derived from n-alkane distributions, showed a similar shifting between glacial-interglacial time-scale. This suggests that paleovegetation communities changed in response to paleoclimatological variations, and the input of terrestrial compound is strongly linked with paleoclimatology. In the previous work, isotopic composition of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ of organic matter showed extreme temporal variation since MIS 11 suggesting influx of a large amount of terrestrial organic matters from the neighboring continent during MIS 2, 8 and 10. In particular, depleted values of $\delta^{13}\text{C}$ during MIS 2, 8 and 10 were coincident with lower nitrogen isotope values indicating local paleoceanographic effects such as paleoproductivity changes. Decoupling of $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ during MIS 1, 3, 5, and 7, and coupling of the two during MIS 8 and 11 is observed, which can be interpreted as local productivity changes. The alkenones SST and n-alkanes signature coincided with carbon and nitrogen isotope variation in terms of glacial-interglacial time scale suggesting that the paleoenvironments in the East Sea is sensitive to the global climate changes associated with not only orbital-scale glacial-interglacial variations but also local paleoceanographic variations.