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Within the DFG funded research unit INUIT (Ice Nucleation research UnIT, FOR 1525), an effort was made to
compare results on immersion freezing from a suite of different instruments. Besides mineral dusts, SnomaxTM
was picked as one of the substances that were examined by all participating groups. Here, the comparison of the
results for SnomaxTM is presented. Every participating group used SnomaxTM from the same batch and, as far
as possible, the same particle generation set-up.
Instruments participating in the comparison were, in alphabetical order, an acoustic levitator (Diehl et al., 2009),
AIDA (Connolly et al., 2009), BINARY (Budke et al., 2013), FINCH (Bundke et al., 2008), LACIS (Hartmann
et al., 2011), PINC (Chou et al., 2011) and the Mainz vertical windtunnel (Diehl et al., 2011). Some of the
instruments examined droplets directly produced from SnomaxTM suspensions, where the suspensions could
have a wide range of concentrations. Other instruments used size segregated particles which were generated
via atomization from a SnomaxTM suspension and subsequent drying, followed by size selection with a DMA
(Differential Mobility Analyzer). These particles were then activated to droplets and cooled subsequently. For
these, the number of ice nucleation active protein complexes present in the droplets depended on the original
particle size (for details see e.g. Hartmann et al., 2013). Also, the different measurements spanned a range of
different time scales. The shortest residence time of roughly 1 second was used for LACIS measurements, and the
longest one was about 6 seconds used in the BINARY setup with a cooling rate of 1 K/min.
All data were evaluated using two different approaches: 1) a time dependent approach following Classical
Nucleation Theory which included the use of a contact angle distribution (see Niedermeier et al., 2014); 2) a
singular approach using an active site density per mass (see Vali, 1971, Murray et al., 2012). Both approaches
were found to work equally well, hence freezing by SnomaxTM can be considered to show no time dependence.
Particularly data from LACIS and BINARY, i.e. from the “fastest” and “slowest” measurements, were found to
agree very well.
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