

Implementation of the ensemble Kalman filter into the BASCOE stratospheric chemistry model

Sergey Skachko (1), Quentin Errera (1), Richard Ménard (2), Yves Christophe (1), and Simon Chabirillat (1)

(1) Belgian Institute for Space Aeronomy, Brussels, Belgium (sergey.skachko@aeronomie.be), (2) Air Quality Research Division, Environment Canada, Dorval, Canada

The local ensemble Kalman filter assimilation method is applied to the BASCOE (Belgian Assimilation System for Chemical ObsErvations) stratospheric chemistry model. We use a stochastic version of the EnKF, i.e. with perturbed observations. The EnKF developed in BASCOE accounts for two adjustable parameters: a parameter α controlling the model error term and a parameter r controlling the observational error. The EnKF system is shown to be markedly sensitive to these two parameters, which are adjusted based on the monitoring of a χ^2 -test measuring the misfit between the control variable and the observations. The model includes 57 chemical species with a full description of stratospheric chemistry. The application of the EnKF to the full-chemistry model requires a careful tuning procedure of the error covariances for each chemical species. The performance of the EnKF method was estimated through the assimilation of Aura-MLS observations during an 8-month period which includes the formation of the 2008 Antarctic ozone hole.