

Quantifying the Fate of Stabilised Criegee Intermediates under Atmospheric Conditions

Mike Newland (1), Andrew Rickard (2), Mohammed Alam (1), Luc Vereecken (3), Amalia Muñoz (4), Milagros Ródenas (4), and William Bloss (1)

(1) School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
(m.j.newland@bham.ac.uk), (2) National Centre for Atmospheric Science, Wolfson Atmospheric Chemistry Laboratories, University of York, United Kingdom, (3) Max Planck Institute for Chemistry, Mainz, Germany, (4) Instituto Universitario CEAM-UMH, EUPHORE Laboratories, Valencia, Spain

The products of alkene ozonolysis have been shown in field experiments to convert SO_2 to H_2SO_4 . One fate of H_2SO_4 formed in the atmosphere is the formation of sulphate aerosol. This has been reported to contribute -0.4 W m^{-2} to anthropogenic radiative forcing via the direct aerosol effect and can also contribute to the indirect aerosol effect, currently one of the greatest uncertainties in climate modelling.

The observed SO_2 oxidation has been proposed to arise from reactions of the carbonyl oxide, or Criegee Intermediate (CI), formed during alkene ozonolysis reactions, with SO_2 . Direct laboratory experiments have confirmed that stabilised CIs (SCIs) react more quickly with SO_2 ($k > 10^{-11} \text{ cm}^3 \text{ s}^{-1}$) than was previously thought.

The major sink for SCI in the troposphere is reaction with water vapour. The importance of the $\text{SO}_2 + \text{SCI}$ reaction in H_2SO_4 formation has been shown in modelling work to be critically dependent on the ratio of the rate constants for the reaction of the SCI with SO_2 and with H_2O . Such modelling work has suggested that the SCI + SO_2 reaction is only likely to be important in regions with high alkene emissions, e.g. forests.

Here we present results from a series of ozonolysis experiments performed at the EUPHORE atmospheric simulation chamber, Valencia. These experiments measure the loss of SO_2 , in the presence of an alkene (ethene, cis-but-2-ene and 2,3-dimethyl butene), as a function of water vapour. From these experiments we quantify the relative rates of reaction of the three smallest SCI with water and SO_2 and their decomposition rates. In addition the results appear to suggest that the conversion of SO_2 to H_2SO_4 during alkene ozonolysis may be inconsistent with the SCI + SO_2 mechanism alone, particularly at high relative humidities.

The results suggest that SCI are likely to provide at least an equivalent sink for SO_2 to that of OH in the troposphere, in agreement with field observations. This work highlights the importance of alkene ozonolysis not only as a non-photolytic source of HO_x but additionally as a source of other important atmospheric oxidants and moves towards quantifying some of the important sinks of SCI in the atmosphere.