

The influence of clouds on the oxidising capacity of the troposphere

Dwayne Heard (1,2), Lisa Whalley (1,2), Daniel Stone (1), Ingrid George (3), Stephan Mertes (4), Dominick van Pinxteren (4), Andreas Tilgner (4), Mat Evans (5,6), and Hartmut Herrmann (4)

(1) School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK (d.e.heard@leeds.ac.uk, l.k.whalley@leeds.ac.uk), (2) National Centre for Atmospheric Science, University of Leeds, Leeds, UK, (3) National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina, USA, (4) Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany, (5) Department of Chemistry, University of York, York, UK, (6) National Centre for Atmospheric Science, University of York, York, UK

Previous model simulations have demonstrated the potential impact of clouds on gas-phase radical chemistry¹. The lack of direct observations and uncertainty in gas-phase cloud-phase interactions, however, has led to this area of atmospheric chemistry being largely overlooked in global models for over two decades. Here we present measurements of OH and HO₂ radicals made during the HCCT (Hill Cap Cloud Thuringia) campaign that took place on Mt. Schmücke, Thuringia in Germany during September/October 2010. The University of Leeds Fluorescence Assay by Gas Expansion (FAGE) instrument was located near the summit of Mt. Schmücke (982 m) and made near-continuous measurements of the radicals at the top of a 22 m tower. The site was regularly influenced by orographic clouds throughout the measurement period. On average, the photolysis rate of O₃ to form O(¹D), J(O¹D), the most common primary initiator of HO_x radicals, was ~ 30 % of its value out of cloud. The HO₂ concentrations were significantly depleted in cloud, with concentrations only ~10 % of the value out of cloud, with OH not observed above the instrument detection limit during cloud events. These results suggest that heterogeneous processes in clouds do perturb the gas-phase radical chemistry. Using an analytical expression to simulate the HO₂ in-cloud observations, a first order loss rate of HO₂ to clouds of ~ 0.1 s⁻¹ is needed to enable agreement between the simulation and measured values, suggesting a reactive uptake coefficient, $\gamma_{HO_2} = 0.005$, at the observed mean cloud droplet surface area of $1.2 \times 10^{-3} \text{ cm}^2 \text{ cm}^{-3}$. This value is in good agreement with very recent recommendations based of laboratory studies of heterogeneous uptake of HO₂ on aqueous aerosols². The rate of loss of HO₂ is strongly correlated with both cloud droplet surface area and pH, demonstrating clear dependencies of γ_{HO_2} on these parameters. The functional form of γ_{HO_2} observed over the pH range encountered during the project can be well replicated using the mechanism outlined by Thornton et al.³ for HO₂ loss in aqueous aerosol without the presence of significant levels of transition metal ions. This work provides experimental evidence that clouds can alter gas-phase concentrations of HO₂ through heterogeneous reactions, and facilitates the correct parameterisation within models. Global model simulations were run and have demonstrated the impact that this neglected aqueous phase chemistry has on the oxidising capacity, with surface OH concentrations significantly reduced by clouds around the Equator, a region where the removal of methane is most efficient.

1. Lelieveld, J. and P.J. Crutzen, Influences of cloud photochemical processes on tropospheric ozone. *Nature*, **343** (6255), 227-233, 1990.
2. George, I. J., Matthews, P. S. J., Whalley, L. K., Brooks, B., Goddard, A., Romero, M. T. B., and Heard, D. E.: Measurements of uptake coefficients for heterogeneous loss of HO₂ onto submicron inorganic salt aerosols, *Phys. Chem. Chem. Phys.*, **15** (31), 12829 - 12845, 2013.
3. Thornton, J. A., Jaegle, L., and McNeill, V. F.: Assessing known pathways for HO₂ loss in aqueous atmospheric aerosols: Regional and global impacts on tropospheric oxidants, *J. Geophys. Res. Atmos.*, **113**, Art. no. D05303, Doi 10.1029/2007jd009236, 2008.