

A comparative approach for modeling of CO₂ storage capacity and associated pressure response – analysis of data from South Scania site, Sweden

Liang Tian (1), Zhibing Yang (1), Byeongju Jung (1), Saba Joodaki (1), Auli Niemi (1), Fritjof Fagerlund (1), and Mikael Erlström (2)

(1) Uppsala University, Uppsala, Sweden (liang.tian@geo.uu.se), (2) Geological Survey of Sweden, Lund, Sweden

Comprehensive modeling with models of varying level of accuracy can give valuable information for the appraisal of CO₂ storage potential and the assessment of risks for a given site. Here, we present a comparative modeling approach/workflow where a sequence of mathematical models of different levels of complexity are applied. These models span from semi-analytical solution to three-dimensional (3D) numerical simulator. The Scania Site, southwest Sweden where the geological model was developed within the MUSTANG project activities is selected for an example study. Initially, a semi-analytical approach is used to investigate pressure increase induced by CO₂ injection so as to determine a viable injection strategy (including injection rate and number of injection wells) and parameter sensitivity. The result is then used as a starting point in subsequent numerical simulations with TOUGH2/ECO₂N for 2D and 3D simulations. At the same time a simplified numerical model with the vertical equilibrium (VE) approach is also implemented. A systematic comparison is done between the different methods in terms of pressure response. CO₂ spreading during both the injection and post-injection phase is also carefully compared between the 2D, VE and 3D numerical simulations. Through these comparisons we can thus identify a model with the appropriate level of complexity according to the objectives of the modeling study. Given the data available, we show an effective modeling strategy in achieving order-of-magnitude estimates on the behavior of the identified CO₂ traps during and after the injection.