

Comparison between a vertical equilibrium model and a three-dimensional multiphase flow model for CO₂ sequestration in geologic formations

Byeongju Jung, Liang Tian, and Auli Niemi

Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden

The vertical equilibrium (VE) approach, assuming pore fluid pressure equilibrium in a vertical direction, becomes more popular within the CO₂ geosequestration research community due to its computational efficiency compared to three-dimensional multiphase flow models. However, the accuracy of this simplified pseudo 3-D numerical method has not fully verified for basin-scale geologic CO₂ storage applications. To address this problem, we have compared CO₂ plume migration in a homogeneous aquifer for benchmarking, calculated by both VE approach and 3-D model implemented by TOUGH2/ECO2N code. Then further comparison on injected fluid pressure and CO₂ transport was performed using a more complicated numerical grid having a realistic reservoir topology. Preliminary results show that the VE model is generally in good agreement with the 3-D model in terms of overpressure ratio, whose values are similar and reach ~60% at the injection well installed in the reservoir with permeability of $4.0 \times 10^{-14} \text{ m}^2$ and porosity of 15%. The migration distance of CO₂ plume estimated by both models also matched closely, showing ~10 km dispersion along with flow path after 0.5 MtCO₂/year injection for 50 years. The results also suggest that the VE approach can be an efficient alternative method for CO₂ storage modeling, especially when reservoir formations have relatively small vertical heterogeneity.