

Cs-137 K-39 Distribution and Cycling in some Forest Ecosystems 25 Years after the Chernobyl Accident

Alexey Shcheglov (1), Ol'ga Tsvetnova (1), Alexey Klyashtorin (2), and Andrey Kasatskiy (1)

(1) Moscow Lomonosov State University, Soil Science Department, Moscow, Russia (schegl@mail.ru), (2) Saskatchewan Research Council, Canada (klyashtorin@src.sk)

Many radioecological research conducted in forest ecosystems after the Chernobyl Accident suggest that Cs-137 distribution in the forest stand and tree components changes with the time. Downward Cs-137 fluxes were shown to prevail during first several years after the accident. It was supposed that with the course of time, the parameters of Cs-137 migration and cycling in the forests would be similar to the corresponding parameters of K-39 that is a chemical analog of Cs-137. However, our later studies showed that in the forest ecosystems on chernozem and grey forest soils (Tula Oblast of Russian Federation, 400-500 km from the ChNPP), annual return of Cs-137 to the soil with litterfall still increased its root uptake by a factor of 2-5, while the K-39 cycle was in steady state. It suggests that Cs-137 cycling parameters in these ecosystems is different from the potassium cycling even a while after the fallout.

In 2008-2013 a similar study was conducted in pine and birch forests located some 100 km from the ChNPP, in Bryans Oblast of Russian Federation where the composition and physico-chemical properties of the initial fallout were similar to that in the 30-km zone of exclusion. In 2008, Cs-137 deposition in the pine and birch ecosystems was 11000 and 6000 Kbq/m², respectively. Cs-137 content in different tree parts varied from 4 to 38 Kbq/kg, and in the pine forest decreased in the following rank: yang needles > internal bark > twigs (under 1 cm in diameter) > external bark > large brunches (over 1 cm in diameter) > wood. In the birch forest, the Cs-137 content in the tree parts decreased in the following rank: leaves > twigs > internal bark > large branches > external bark > wood. The K-39 content in the tree parts varies from 0.01% to 1 % and is ranked as above, i.e. similar to Cs-137. The average coefficient of correlation between K-39 and Cs-137 in the tree components is 0.85, at P=0.95.

In the investigated ecosystems, the total mass (activity) of potassium and Cs-137 accumulated in the above-ground tree components depends on the total biomass as well as the elements concentration in each tree component; the largest proportion of both elements is attributed to wood, while minimum amount is contained in the external bark. At the same time, both Cs-137 and K-39 accumulated in the annual tree increment are mainly attributed to young assimilative organs (leaves and young needles).

In the pine ecosystem, the proportion of both Cs-137 and potassium that returns annually to the soil with litterfall is about 45% of the total element amount in the tree stand, which is about 47% of the annual element accumulation in the phytomass. In the birch ecosystem, Cs-137 return to the soil is 49% and exceeds that of K-39 40%. In both ecosystems, the assimilative organs (leaves and needles) make the most significant contribution to annual return of Cs-137. Thus, the parameters of biological cycle of K-39 ? Cs-137 in the investigated ecosystems are comparable, as forecasted. It can be concluded that the annual cycles of K-39 and Cs-137 in these ecosystems are in a quasi steady state, and only a small proportion of these elements is retained annually in the forest stand compared to their annual return to the soil.