

Monitoring volcano fuel in near-real-time. Advances and opportunities.

Matthew Pankhurst (1), Kate Dobson (2,3), Dan Morgan (1), Sue Loughlin (4), Thor Thordarson (5), Peter Lee (2,3), Loic Courtois (2,3)

(1) University of Leeds, Institute of Geophysics and Tectonics, School of Earth and Environment, Leeds, United Kingdom (m.j.pankhurst@leeds.ac.uk), (2) Manchester X-ray Imaging Facility, School of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK, (3) Research complex at Harwell, Rutherford Laboratories, Didcot OX11 0FA, UK, (4) British Geological Survey, Edinburgh, EH9 3LA, UK, (5) Institute of Earth Science, University of Iceland, Saemundargotu 2, Reykjavik, Iceland

Petrology underpins our knowledge of magmatic processes, and thus offers important insights to volcanic risks. Processes like recharge events and changes in magmatic components are recorded within the volcanic material, which represents an opportunity to understand specific eruptions as they evolve. Conventional petrologic and geochemical analysis is time intensive and produces comparatively small datasets, thus limiting its use during time critical scenarios like volcanic crises. Here we use X-ray micro-computed tomography to rapidly measure crystal chemical populations of olivine, utilising the density contrast exerted by its Fe-Mg solid solution. Olivine is a priority mineral, as its chemistry is a function of the magma's temperature, pressure and composition history. Using the method described here, a sample containing potentially hundreds of crystals can be rendered in 3D and chemical populations assessed within 2 hours. Using eruption-specific XMT petrologic and geochemical data as inputs to geophysical and ash dispersal models may provide an avenue for fully integrated eruption monitoring. The method also has value in the generation of large datasets of previous eruption sequences, providing a "back catalogue" with which to compare empirical patterns during future events as they unfold.