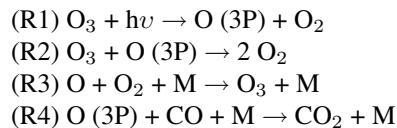


Isotope effects in photo dissociation of ozone with visible light


Marion Früchtl (1), Christof Janssen (2), and Thomas Röckmann (1)

(1) Institute for Marine and Atmospheric Research Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
(m.fruechtl@uu.nl, t.roeckmann@uu.nl), (2) Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA2), 4 Place Jussieu, 75005 Paris, France. (christof.janssen@upmc.fr)

Ozone (O_3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O_3 has a very peculiar isotope composition. Following the mass dependent fractionation equation $\delta^{17}O = 0.52 * \delta^{18}O$, most fractionation processes depend directly on mass. However, O_3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O_3 formation reaction. To what degree O_3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O_3 is still not fully understood and an open question within scientific community.

We set up new experiments to investigate the isotope effect resulting from photo dissociation of O_3 in the Chappuis band (R1). Initial O_3 is produced by an electric discharge. After photolysis O_3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O_3 is then converted to O_2 in order to measure the oxygen isotopes of O_3 using isotope ratio mass spectrometry.

To isolate O_3 photo dissociation (R1) from O_3 decomposition (R2) and secondary O_3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the $O + O_3$ reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O_3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling.

