

The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment

Ralf Srama and the CDA Science Team

University of Stuttgart, -, IRS, Stuttgart, Germany (srama@irs.uni-stuttgart.de, 49 711 685 63596)

The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus.

Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn.

The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys.

A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.