

Lyman Alpha Camera for Io's SO₂ atmosphere and Europa's water plumes

Alfred S. McEwen (1), Bill Sandel (1), and Nick Schneider (2)

(1) University of Arizona, Lunar and Planetary Lab, Planetary Sciences, Tucson, United States (mcewen@lpl.arizona.edu, 001-520-626-8998), (2) LASP, University of Colorado, Colorado, United States

The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO₂ atmosphere by recording the H Ly- α reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO₂ absorbs at H Ly- α , thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO₂ atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly- α wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes \sim 200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly- α , analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (\sim 75 km/pixel), \sim 3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO₂ column abundances ranging from 1E15 to 1E17 per cm² in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly- α brightness of \sim 3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from absorption. Also, the radiation-induced noise is lower at Europa, permitting longer exposure times and imaging at closer range. This is a very simple instrument with no moving parts, a mass of 4 kg (plus 1.7 kg radiation shielding), and it needs 4 W power. It has no special accommodation requirements and would simply collect data in ride-along mode during point-and-stare sequences.

Feaga, L.M., et al. (2009) Io's dayside SO₂ atmosphere, *Icarus* 201, 570-584 (2009).
Feldman, P.D., et al., (2000) Lyman- α imaging of the SO₂ distribution on Io, *Geophys. Res. Lett.*, 27, 1787-1790.
McEwen, A.S. et al. (2014) Io Volcano Observer (IVO): Budget travel to the outer Solar System. *Acta Astronautica* 93, 539-544.
Roth, L. et al. (2014) Transient water vapor at Europa's south pole. *Science* 343, 171.
Sandel, B., et al. (2000) The Extreme Ultraviolet Imager investigation for the IMAGE mission. *Space Sci. Rev.* 91, 197-242.