

A 10-year (2001–2010) land surface energy balance product for climate and ecohydrological studies for mainland China

Bob Su (1), Xuelong Chen (1), Yaoming Ma (2), Binbin Wang (1,2), Shaomin Liu (3), Qiang Yu (4), and the WACMOS-ChinaFlux Team

(1) University of Twente, ITC, Department of Water Resources, Enschede, Netherlands (z.su@utwente.nl), (2) Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, (3) State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing, China, (4) Plant Functional Biology & Climate Change Cluster, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia

In the absence of long-term, continental observations of the components of the surface energy balance in China, we developed an algorithm to generate a dataset of land surface energy and water fluxes on a monthly timescale from 2000 to 2010 at 0.1×0.1 degree resolution by using multi-satellite, remotely sensed land surface data and meteorological forcing data. The dataset was validated by using 'ground-truth' observations from 12 flux tower stations in China. The validation results demonstrated that more accurate albedo and downward longwave radiation datasets are needed in order to accurately estimate turbulent fluxes and evapotranspiration when using surface energy balance model. The mean spatial pattern and the seasonal variability of surface heat fluxes were well simulated. This paper presents a benchmark for an up-scaling approach for generated land fluxes in China. Trend analysis of the land surface radiation and energy exchange signals shows that the Tibetan Plateau area is experiencing relative stronger climate changes than other parts of China. The capability of the dataset to provide critical information on continental-scale water-cycle, land–atmosphere exchanges and ecohydrological researches in China is examined.