

Impact of dust on biogeochemical processes in the East Mediterranean Sea, lessons from on-board microcosm and land-based mesocosm experiments

Barak Herut (1), Paraskevi Pitta (2), Nikos Mihalopoulos (3), Tatiana Tsagaraki (2), Eyal Rahav (1), Ilana Berman-Frank (4), Stella Psarra (2), Antonia Giannakourou (2), Anastasia Tsiola (2), Zongbo Shi (5), Tsuneo Tanaka (6), Mustafa Kocak (7), Nabil Yucel (7), Hongbin Liu (8), Maria Louiza Pedrotti (6), Manolis Tsapakis (2), Kalliopi Violaki (3), MariLuz Fernandez (9), Travis Meador (10), Christos Panagiotopoulos (11), and the ATMOMED Team

(1) Israel Oceanographic and Limnological Research, Israel (barak@ocean.org.il), (2) Hellenic Centre for Marine Research, Institute of Oceanography, Heraklion, Crete, Greece., (3) Department of Chemistry, University of Crete, Heraklion, Crete, Greece, (4) Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel., (5) School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham , UK, (6) CNRS institute, Laboratoire d'oce'anographie, Villefranche, France. , (7) Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey, (8) Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China., (9) Laboratorio de Sanidad Exterior de Vigo, European Community Reference Laboratory on Marine Biotoxins, , (10) Department of Geosciences, Bremen University, Bremen, Germany., (11) Laboratoire de Microbiologie Géochimie et Ecologie Marine (LMGEM), Université de la Méditerranée, Marseille, France.

Recent on-board microcosm and land-based mesocosm experiments in the oligotrophic Eastern Mediterranean Sea (EMS) indicates a significant role of Mediterranean aerosols as a net supplier of macro and micro nutrients (N, P, Fe and other trace metals) to the Low Nutrient Low Chlorophyll EMS. In such ultra-oligotrophic environment the leachable nutrients from dry atmospheric inputs add significant quantities of nutrients and become rapidly (<2hrs) bioavailable influencing substantially biogeochemical processes. Experimental additions triggered an increase in several of the performed rate and state variables as bacterial production and abundance, primary production rates and chlorophyll a (or other phytopigments), abundance of certain pico and nanophytoplankton groups and nitrogen fixation rates. Understanding these relationships is important to follow the pathways of N, P (and C) into the EMS food web and the future climate- and human-induced changes in the EMS.