

Extreme events in Faraday waves

Horst Punzmann, Michael Shats, and Hua Xia

The Australian National University, Research School of Physics and Engineering, Physics of Fluids Laboratory, Canberra ACT, Australia

Observations of extreme wave events in the ocean are rare due to their low statistical probability. In the laboratory however, the evolution of extreme wave events can be studied in great detail with high spatial and temporal resolution. The reported surface wave experiments in the short wavelength gravity-capillary range aim to contribute to the understanding of some of the underlying mechanisms for rogue wave generation.

In this talk, we report on extreme wave events in parametrically excited Faraday waves. Faraday waves appear if a fluid is accelerated (normal to the fluid surface) above a critical threshold. A variety of novel tools have been deployed to characterize the 2D surface elevation. The results presented show spatio-temporal and statistical data on the surface wave conditions leading up to extreme wave events. The peak in wave amplitude during such an event is shown to exceed six times the standard deviation of the average wave field with significantly increased statistical probability compared to the background wave field [1]. The experiments also show that parametrically excited waves can be viewed as assemblies of oscillons [2] (or oscillating solitons) where modulation instability seems to play a crucial role in their formation. More detailed studies on the oscillon dynamics reveal that the onset of an increased probability of extreme wave events correlates with the increase in the oscillons mobility and merger [3].

Reference:

1. Xia H., Maimbourg T., Punzmann H., and Shats M., Oscillon dynamics and rogue wave generation in Faraday surface ripples, *Physical Review Letters* 109, 114502 (2012)
2. Shats M., Xia H., and Punzmann H., Parametrically excited water surface ripples as ensembles of oscillons, *Physical Review Letters* 108, 034502 (2012)
3. Shats M., Punzmann H., Xia H., Capillary rogue waves, *Physical Review Letters*, 104, 104503 (2010)