

Development and deployment of a compact PTR-ToF-MS for Suborbital Research on the Earth's Atmospheric Composition

Markus Müller (1), Tomas Mikoviny (2,3,5), Stefan Haidacher (4), Gernot Hanel (4), Eugen Hartungen (4), Alfons Jordan (4), Lukas Märk (4), Paul Mutschlechner (4), Ralf Schottkowsky (4), Philipp Sulzer (4), James H. Crawford (2), Armin Wisthaler (1,5)

(1) Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria, (2) Chemistry and Dynamics Branch, Science Directorate, NASA Langley Research Center, Hampton (VA), USA, (3) Oak Ridge Associated Universities, Oak Ridge (TN), USA, (4) Ionicon Analytik Ges.m.b.H., Innsbruck, Austria, (5) Department of Chemistry, University of Oslo, Oslo, Norway

We report the development of a compact Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) in support of NASA's suborbital research program on the Earth's atmospheric composition. A lightweight, low mass resolution orthogonal acceleration ToF-MS was developed and combined with a conventional PTR ion source to measure volatile organic compounds (VOCs) in real time. The instrument was specially designed to resist aircraft vibrations and rough conditions during boundary layer flights, take-off and landing.

The compact PTR-ToF-MS generates full mass spectral information at 1-second time resolution and below. With sensitivities of up to 150 cps/ ppbv, typical 2σ detection limits in the range from 0.06 to 0.48 ppbv for a 1-second signal integration are achieved.

A mass resolving power $m/\Delta m$ of up to 1700 combined with an absolute mass accuracy and reproducibility of less than 3 mDa make it possible to distinguish isobaric ions at high time resolution, e.g. humidity- dependent isobaric background ions.

The prototype instrument was successfully deployed for in-situ measurements of VOCs onboard the NASA P-3B Airborne Science Laboratory during two DISCOVER-AQ campaigns in the San Joaquin Valley, CA, and in Houston, TX, 2013. A 1-second time resolution results in a horizontal spatial resolution of typically 110 m and a vertical spatial resolution of typically 8 m which allowed for the quantitative detection of the entire suite of VOCs in strongly localized emission plumes from industrial, agricultural and biomass-burning sources.

This work was funded by BMVIT / FFG-ALR in the frame of the Austrian Space Application Programme (ASAP 8, project 833451). Additional resources were provided through NASA's Earth Venture program (EV-1) and the NASA Postdoctoral Program (NPP).