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 Short-term reservoir optimization, or model predictive control (MPC), integrates model-based forecasts and optimization algorithms to meet multiple management objectives: water supply, navigation, 
hydroelectricity generation, environmental obligations and flood protection. It is a valuable decision support tool to handle water-stress conditions or flooding events, and supports decision makers to minimize their 
impact.  
If the reservoir management includes downstream control, for example for mitigation flood damages in inundation areas downstream of the operated dam, the flow routing between the dam and the downstream inundation 
area is of major importance. 
 The Três Marias hydropower reservoir is  located  in the Upper São Francisco River  in  the  center of Minas Gerais state, Brazil, with a drainage area of approximately 55,000 km² (Figure 1).  The region  of interest in 
this  use  case extends to Pirapora city, located  120  km downstream of the reservoir. With a  total storage of  19.5×109 m³ and total installed capacity is 396 MW. (6 x 66 MW), The hydropower dam  serves  multiple  purposes:  
hydropower generation, flood control, navigation, municipal and industrial water supply and irrigation.  Its operation is responsible for flood control and mitigating flood inundation at the city of  Pirapora.  
 For Brazilian standards,  this watershed is covered by a dense  network of  meteorological and fluviometric gauges. Many of them include telemetry with real-time data available from the  National Water Agency 
(Agência Nacional de Águas – ANA) and CEMIG. 
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 The unsteady open channel flow in river reaches can be described by the one-dimensional Saint-Venant equations. These mathematically complex equations, can be simplified to speed up the computation for optimization procedure, 

four different routing models are assessed, each using a different flow routing equation (Table 1). The aim of the paper is to asses their implementation concerning the predictive control . Another strategy to limit the model runtime is a 
schematization on a course computational grid (Table 2).  

In the graphs 1 and 2  shows that whereas the SOBEK model is able to propagate sharp discharge gradient downstream, the diffusive wave model is damping these gradients significantly. The reservoir routing and the MGB results present a better representations of  peak flows and abrupt flow changes, 
however the MGB model has a time step fit asynchrony. 
The overall model accuracy between the Diffusive Wave models (Coarser Grid and Finer Grid) and the more sophisticated SOBEK model are comparable, a lower performance was assessed for the MGB model, and a better performance for the Reservoir Routing  (Table 3).  In the same table  shows the CPU 
performance of the chosen models  even though SOBEK and the finer grid Diffusive Wave model was able to obtain better performance indicators they require more CPU effort. 
The Diffusive Wave damping occurs due to the course spatial schematization, which introduces significant numerical diffusion into the solution. This is a major drawback, in particular if the reservoir release has steep gradients which we often find in hydropower reservoirs.  
In the reservoir routing model, which is also schematized on a course grid, we counteract this drawback by modeling parts of the river reach by advection. This results in an excellent ratio between model accuracy / robustness and computational effort making it the approach of choice from the predictive 
control perspective. 

Model Governing Equation 

SOBEK Full-Dynamic 

MGB-IPH Muskingum-Cunge* 

RTC-Tools Diffusive Wave Diffusive Wave 

RTC-Tools Reservoir 
Routing 

Reservoir  Routing 

Model N°  Nodes 

SOBEK  146 

RTC-Tools Diffusive Wave 
(Finer Grid) 

14 

RTC-Tools Diffusive Wave 
(Coarser Grid) 

6 
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Figure 1 – Location of  the Três Marias Reservoir Watershed and detail of the Hydropower 
dam. 

Model 

CPU 
Performance 

(ms) 
Bias RMSE R² NSE 

MGB 359 13,329 120,937 0,960 0,958 
SOBEK  135175 -22,55 105,256 0,966 0,983 

Reservoir 

Routing  156 0,030 68,273 0,980 0,980 

Diffusive Wave -
Coarse  Grid 1887 0,210 76,620 0,975 0,975 

Diffusive Wave 
- Fine Grid 

1903 0,091 70,929 0,978 0,978 
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I.a-)Continuity Equation 

I.b-)Momentum Equation 

𝐼 𝑡 − 𝑄 𝑡,ℎ =
𝜕𝑠(ℎ)

𝜕𝑡
 

𝑄 ℎ, 𝑑𝑔 = 𝑄𝑐(ℎ, 𝑑𝑔) + 𝑄𝑢(ℎ) 

II-) Reservoir  Routing 

A,flow area 
B,top width 

Table 1 – Models and their respective flow routing methods. 

Table 2 – Spatial schematization for SOBEK and RTC-Tools 
Diffusive Wave . 

I-)  Saint-Venant Equations 2-) Methods III-) Muskingum-Cunge* 
Equivalent to the knematic wave 

𝑠 = 𝑘 𝜀𝐼 + 𝑄 1 − 𝜀   

𝑄𝑗+1
𝑛+1 = 𝐶1𝑄𝑗

𝑛 + 𝐶2𝑄𝑗
𝑛+1 + 𝐶3𝑄𝑗+1

𝑛  

𝑘 =
Δ𝑥

𝑐
 𝜀 =

1

2
1 −

𝑞

𝑆0𝑐Δ𝑥
 

𝑐 =
𝜕𝑄

𝜕𝐴
|𝑗,𝑛 𝑞 =

𝑄

𝐵
|𝑗,𝑛 

𝐶1 =
−2𝜀∆𝑥 + 𝑐∆𝑡

2∆𝑥 1 − 𝜀 + 𝑐∆𝑡
 

𝐶2 =
2𝜀∆𝑥 + 𝑐∆𝑡

2∆𝑥 1 − 𝜀 + 𝑐∆𝑡
 

𝐶3 =
2𝜀∆𝑥 − 𝑐∆𝑡

2∆𝑥 1 − 𝜀 + 𝑐∆𝑡
 

The finite difference formulation 

Storage Relation in a channel reach 

𝜕𝑆

𝜕𝑡
= 𝐼 − 𝑄 

Continuity Equation 

𝑘, storage coefficient 
𝜀, weighting factor 
I, inflow rate to the reach 
O= Outflow rate from the reach 

Table 3 – Performance Indicators Graph 2 – Model  Diffusion . Graph 1 –  Model comparison . 


