

Universidad Nacional Autónoma de México Facultad de Ciencias

Unidad Multidisciplinaria de Docencia e Investigación Campus Juriquilla

1. INTRODUCTION

ropical coastal wetlands, including evergreen ainforests, mid forest and grassland induced ecosystems play an increasingly important ecological and economic e in the tropical coastal area of the State of Veracruz, . However, soil processes in these environments, pecially C-turnover rates are largely unknown until

Therefore, we investigated CO_2 and CH_4 emissions together with gains and losses of organic C in the soils of two different coastal ecosystems in the "Natural Protected Area Ciénaga del Fuerte (NPACF)" near Tecolutla, in the State of Veracruz.

2. STUDY SITE

This study was carried out at the Ciénaga del Fuerte, Veracruz, México (20°19'0.76" LN, 96°54'71" LW and 20°18'50.55" LN, 96°52′47" LW; 8 m asl. Tropical humid climate. Vegetation types: Lowland riparian forest, deciduous tropical lowland forest, semideciduos tropical lowland forest, mangrove. The principal soil groups: Gleysol, Regosol and Cambisol.

Semideciduos tropical lowland forest (S1)

Grassland flooded (S2)

. References 1)Terra lationoamericana, 2010, 28(2). Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (eds). Field book for describing and sampling soils. V 2.0 NRCS, NSSC, LI (2002) (3) Australian Journal Botany, 2012, 60 (4) Journal spanish soil science, 2012, 2(2).
(5) Science in China, 2002, vol 45 supp

Carbon sequestration potential of coastal wetland soils of Veracruz, México Fuentes-Romero, E, García-Calderón, NE*, Ikkonen, E., García-Varela, KL *negc@ciencias.unam.mx, fre@comunidad,unam.mx

3. MATERIAL AND METHODS

Soil physical (Moisture content, bulk density) and chemical properties such as pH and SOC were determinated. To measure soil carbon stockes, 2 profiles were digged up to lithic or water table limit (2). Soil samples were taken by genetic horizons. Bulk density samples were extracted with a cylinder of 100 cm³. Additional samples were taken to quantify OC with wet combustion method. Estimation of CO_2 and CH_4 fluxes were measured by static chambers installed at the flooded semi-deciduos tropical lowland forest (S1) and flooded grassland (S2) for every season from 2010 to 2011. GHG's were quantified by gas chromatography. The ecosystem emission compartments were determined.

GHG's fluxes measurement

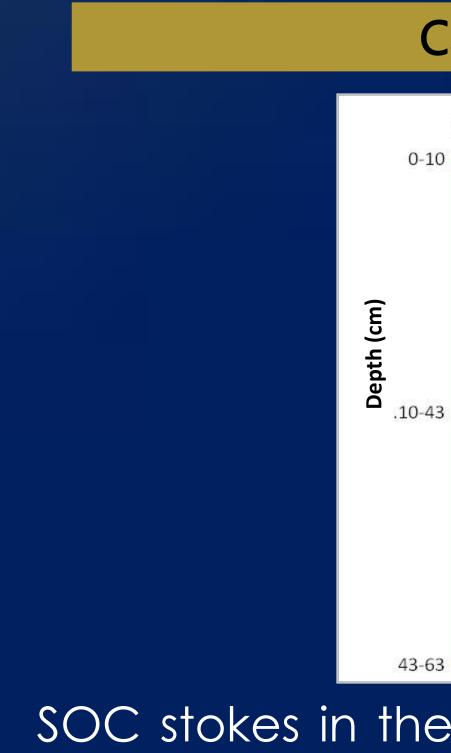

4. Results. Soils showed an accumulation of OC in the surface horizons. The highest accumulation was observed in grasslands. Also OC content was highest at the subsurface horizon. Soil reactions range from slightly acidic to slightly sodic. Lowest bulk densities were obtained in the Ah horizons of the flooded grassland and flooded semideciduos tropical forest.

Table 1. Chemical and physical properties of two wetland soils									
Sites	Horizon	Depth	Color	Water	Bulk	SOC	٢	ЪН	
		cm	(moist)	content	density	g kg-1	H ₂ O	KCI	
				w/w	g cm ⁻³		1:	2.5	
Semi	Semideciduos tropical lowland forest- 20°19´0.76" LN, 96°54´71" LW; 8 m asl							n asl	
S1	Ahı	0-10	10YR3/1	68.2	0.96	65.5	6.73	6.05	
			very dark gray						
	AC	10-43	10YR3/4	25.8	1.50	4.9	7.34	6.17	
			Dark yellowish						
			brown						
			5YR4/6						
			yellowish red						
	Acg	43-63	10YR3/2	25.6	1.50	4.8	6.52	5.83	
			very dark						
			grayish brown						
			5YR4/6						
	yellowish red								
Flooded Grassland - 20°18´50.55" LN, 96°52´47" LW; 8 m asl									
S2	Ah1	0-10	10YR3/1	119.4	0.58	159.1	5.3	4.41	
			very dark						
			gray						
	Ah2	10-20	10YR3/1	79.1	0.75	69.8	5.3	5.03	

		very dark
		gray
Ah2	10-20	10YR3/1
		very dark
		gray

Acknowledgements: Thanks to SEMARNAT-CONACyT project No. 23489 and PAPIIT project No. IN224410 by finantial support

Table 1 Champing and physical properties of two watered sails

SOC stokes in the fraction of the wetland mineral soil were highest. C contents drop with depth. Soil group and vegetation also had influence on C budgets. Grassland had the highest carbon stock in the NPACF.

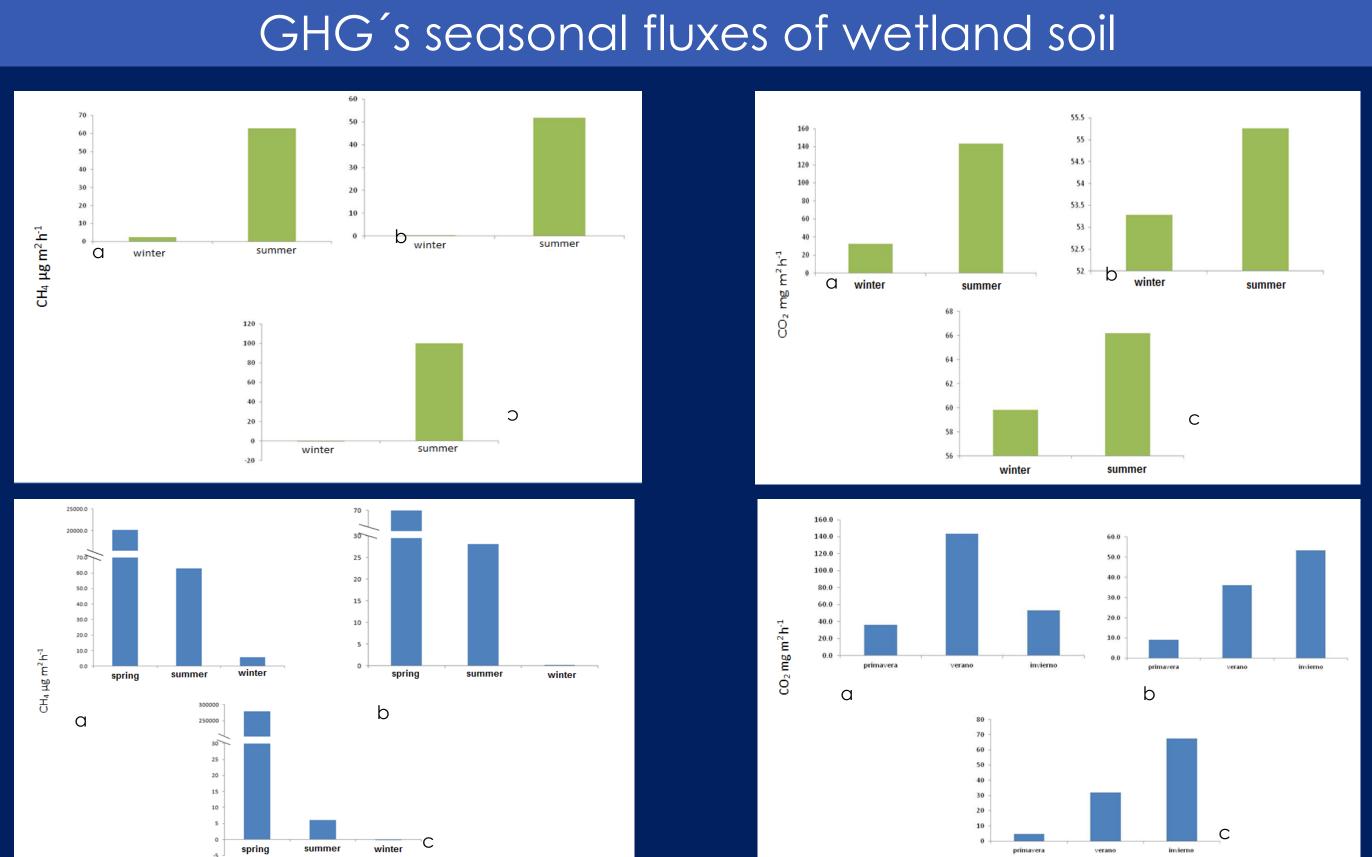


Figure 3Figure 3. Flux emissions CO_2 and CH_4 in different compartments in: 1) semideciduous tropical lowland forest and 2) flooded grassland. a) vegetation systems, b) - root systems and, c) soil.

Continuous loss of carbon to the atmosphere occurs at both sites during spring and summer. But during the rainy season the emission is less for CH_{4} .

5. Discussion and conclusions

Soil organic carbon accumulation occurs in the surface horizons showing its stability by edaphogenic processes (mainly paludization in flooded grassland and humification in the forest), although a cross OC redistribution in the soil, especially in the forest. OC accumulation is favored in the pasture than in the forest, although both had a high potential as a carbon budgets. This has been associated with high input necromass from the root system and canopy biomass residues (3). The budgest C in the tropical forest is greater than 360 Mg Ha⁻¹ reported in other soils (4). The budgest C potencial is similar a another areas . Carbon balance in both systems is given by the loss of C to the atmosphere on a continuous basis, especially the grassland that emit similary to other (4). Although there is a significant reduction in CO₂ and CH4 emissions during the winter season. This is associated with temperature and humidity changes. It is documented by several authors that in wetland soils production of CH_4 and CO_2 are influenced by soil humidity and soil temperature (4). The grassland emission GHG's is greater than other systems reported (5).

Carbon sequestration on both wetland soil Mg SOC Ha⁻¹ 0 200 400 600 800 1000 800 600 400 Flooded grassland Semideciduo: tropical lowland