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3 Background “ ..Snowmelt runoff is one of the few M

natural phenomena for which relatively
accurate long-term forecast can be made”
Lettenmaier & Waddle (1978)
Long-term forecasting of snow-melt runoff volume:

Physical-statistical methods (Russian practice)
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4 Background |@ ®

Refinement of the regression-based forecasts can be expected through the use of
ever longer homogeneous time series of observations and thus longer calibration

periods
But this is not the case...Why?

 the available observation series are non-homogeneous as a consequence of
changes in land use, modernisation of data collection techniques, and so on

« some data obtained using modern technologies (e.g. satellite observations) cannot
be incorporated into the existing regression relationships, which are based on
traditional ground-truth observations

 the accuracy of the forecasts turns out to be insufficient to satisfy the growing
demands of its users

Process-oriented hydrological modeling offers scope for improvement of a

forecast accuracy
For what reasons?

. models are based on physical principles. This means that they generally reproduce
the main processes of runoff generation that allows extending physical content of the
forecast and overcoming the restrictions inherent in regression-based methods

. It may be possible to widen informational basis of the forecast by using modern
measurement technologies (including satellite data)

. using the model, it may be possible to obtain the predicted hydrographs, rather than
just the runoff volume, thus resulting in increased potential benefits for decision

makers
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“A deterministic format forces the forecaster to suppress

information and judgment about uncertainty” and “...may

create the illusion of certainty in a user’s mind”
Krzysztofowicz, 2001

For many years, the prevailing techniques used in operational hydrological forecasts,
including long-term ones, were deterministic. These methods used a single set of
input values to produce a single set of predicted outcomes (runoff volume, river
discharges, etc.), which were then assumed to represent the most likely conditions
of runoff. By taking into account the forecast uncertainty, ensemble forecasting
offers an approach that could improve the accuracy of hydrological forecasts in
comparison with the deterministic approach.
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Two approaches to process-based models application for long-term ensemble forecasting of
snow-melt runoff were suggested (Kuchment L.S., Gelfan A.N. (2007a,b; 2009):

1. Use of the historical, observed weather patterns (assumed to be equally
likely) to drive the model, starting at the forecast date

2. Use of artificial weather patterns, generated by a stochastic model
(“weather generator”), persisting the probabilistic properties of observed
weather variables

In the current study the approach was improved:
* Large-scale hydrological model was used
e Weather time-series for the lead time constructed by multi-site weather
generator
* Long-term forecast into large reservoir

Kuchment L.S., Gelfan A.N. (2007a). Long-term probabilistic forecasting of snowmelt flood characteristics and the forecast
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Kuchment L.S., Gelfan A.N. (2007b). Long-Term Ensemble Forecast of Snowmelt Runoff with the Help of the Physics-Based
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7 Methods & models |@ ®

Physically-based semi-distributed model ECOMAG
(ECOlogical Model for Applied Geophysics)
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Vertical structure of ECOMAG

Digital elevation model

Layer of runoff
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g the spring inflow into Cheboksarskoe water reservoir
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11 Case study: forecasting the spring inflow into Cheboksarskoe water reservoir |@ ®

The model was calibrated and validated against the observed data for 1982-2010

20000
18000
16000 -
14000 -
12000 ' | I Calibration period
(1982-1999)
8000 - |
6000 - | - }
4000 - | ‘
= ML A AU L
81/01/82 01/(;1/84 31/1‘2/85 31/1‘2/87 30/1‘2/89 30/1‘2/91 29/1‘2/93 29/1‘2/95 28/1‘2/97 28/1‘2/99
20000 -
18000 -
16000
14000 l
] ) ] 12000 -
Validation period 10000
(2000-2010) w000 - |
6000 - |
4000 -
2000 - A \Ad
0

01/10/00  01/10/01  01/10/02  01/10/03 30/09/04  30/09/05  30/09/06 30/09/07 29/09/08  29/09/09  29/09/10  29/09/11

European Geosciences Union General Assembly 2014

Vienna | Austria | 27 April — 02 May 2014



12 Deterministic long-term forecast |@ ®

Simulated characteristics of snow and basin conditions
on the forecasting date (March, 1)

Mean (climatology) time series of meteorological variables for the
lead-time period (1 March-31 May)
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13 Deterministic forecast for 1982 - 2010
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14 Probabilistic long-term forecast — 1t approach |@ ®

Simulated characteristics of snow and basin conditions
on the forecasting date (March, 1)

Ensemble of 30 (1961-1990) meteorological scenarios
measured for the lead time of the forecast
(1 March-31 May)
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robabilistic long-term forecast — 15t approach

Observed weather ensembles
15 locations
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17 Probabilistic long-term forecast 2 |@ ®

Simulated characteristics of snow and basin conditions
on the forecasting date (March, 1)

Weather Generator

Monte Carlo generated ensembles of 100 weather time
series for the lead-time of the forecast
(1 March-31 May)
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Nested Weather Generator - NeWGEN (Gelfan, Moreido, 20141 )

Precipitation model

e Daily dry/wet state — 15t-order Markov chain
e Precipitation amount on a wet day - intensity-
dependent gamma-distributed value with
seasonal variability described by Fourier series oo =

Rainfall intensity on a warm day
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Temperature model

e Mean annual air temperature — normally
distributed random value. Daily
temperature - Fourier series with daily
deviations described by AR(1) model
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Air humidity deficit

e Mean annual humidity deficit — normally
distributed random value. Seasonal
variability of the daily humidity deficit on a
wet day is described by Fourier series.

1 Russian Ice and Snow Journal, 2014, vol. 2
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19 Case study: forecasting the spring inflow into Cheboksarskoe water reservoir |@ O)

100 generated climate ensembles
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ring inflow into Cheboksarskoe water reservoir

CDF of inflow volume during March — May CDF of maximum discharge
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21 Results and discussion |@ ®

Meteorological scenarios  Nash-Sutcliffe efficiency Nash-Sutcliffe efficiency
for lead-time period for total inflow volume for maximum discharge

Deterministic forecast

Climatic mean 0.48 0.45

Ensemble forecast (average)

Observed weather 0.60 0.12
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 An approach for model-based forecast of spring inflow into a large
reservoir has been developed employing two types of model
forcing for the lead-time period
— Use of the historical, observed weather patterns
(assumed to be equally likely) to drive the model, starting
at the forecast date
— Use of artificial weather patterns, generated by a
stochastic model (“weather generator”), persisting the
probabilistic properties of observed weather variables

 Ensemble forecast allows for significant improvement in total

inflow volume prediction
* Incorporation of stochastic weather generator allows for

estimation of the events of larger return period as compared to
the observed weather ensemble
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