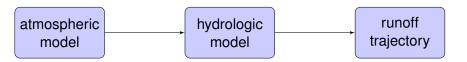
Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

S. Hemri¹, D. Lisniak², B. Klein²

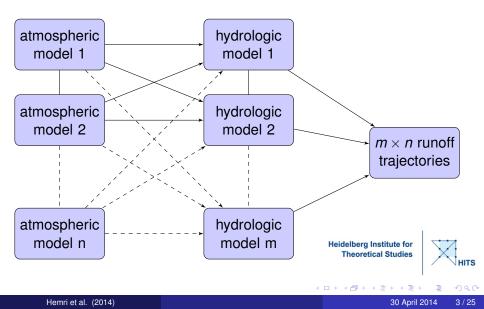
CST group, Heidelberg Institute for Theoretical Studies¹


in cooperation with and funded by: Bundesanstalt für Gewässerkunde (BfG, Koblenz)²

EGU: 30 April 2014

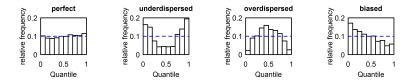
Heidelberg Institute for Theoretical Studies

Deterministic hydrologic forecasts



- Problem: statements on uncertainty impossible
- Generate ensemble forecasts by using several models, model configurations, and initial and boundary conditions.

▲ 同 ▶ | ▲ 三 ▶


Hydrologic ensemble forecasts

Post-processing of ensemble forecasts

Main goals by Gneiting & Raftery (2007):

Well calibrated,

Hypothetical PIT histograms

and sharp probabilistic forecasts.

Heidelberg Institute for Theoretical Studies

30 April 2014

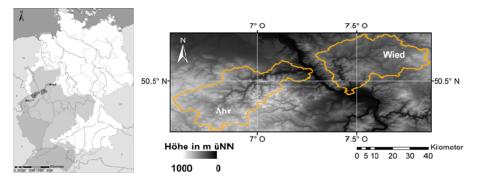
4/25

The BfG forecasting system censors forecast and observed runoff values below a specific threshold (i.e. 5 m³/s).

- The BfG forecasting system censors forecast and observed runoff values below a specific threshold (i.e. 5 m³/s).
- This is done to handle uncertainty in low flow situations.

- The BfG forecasting system censors forecast and observed runoff values below a specific threshold (i.e. 5 m³/s).
- This is done to handle uncertainty in low flow situations.
- Standard post-processing methods rely mostly on continuously distributed variables (very often Gaussian).

- The BfG forecasting system censors forecast and observed runoff values below a specific threshold (i.e. 5 m³/s).
- This is done to handle uncertainty in low flow situations.
- Standard post-processing methods rely mostly on continuously distributed variables (very often Gaussian).
- There is a need for a post-processing method for censored data:


- The BfG forecasting system censors forecast and observed runoff values below a specific threshold (i.e. 5 m³/s).
- This is done to handle uncertainty in low flow situations.
- Standard post-processing methods rely mostly on continuously distributed variables (very often Gaussian).
- There is a need for a post-processing method for censored data: → Ensemble Model Output Statistics (EMOS) by Gneiting et al. (2005) is very suitable for this purpose due to its flexibility and simplicity

Heidelberg Institute for Theoretical Studies

Considered catchments

For testing the censored EMOS method we have selected the rivers Wied and Ahr:

Source: Bundesanstalt für Gewässerkunde (BfG), Koblenz (2013).

Heidelberg Institute for Theoretical Studies

• • • • • • • • • • • •

Percentage of censored observations (obtained from the climatology from 1.11.1998 to 31.10.2008):

gauge	catchment	area [km²]	% censored
Altenahr (ALTE)	Ahr	746	72%
Friedrichsthal (FRIE)	Wied	680	55%

The hydrologic raw ensemble is obtained by running the HBV-96 model several times using the following meteorological input ensembles¹:

name	# members	lead-times	spatial resolution \sim
COSMO-LEPS	16	1-114 h	10 km
DWD-GME	1 (det.)	1-174 h	20 km
DWD-MER	1 (det.)	78 h (174 h)	7 km (20 km)
ECMWF-IFS	1 (det.)	1-240h	16 km

¹ DWD-MER stands for a model run based on COSMO-EU forcing up to lead-time 78 h and on DWD-GME thereafter.

The hydrologic raw ensemble is obtained by running the HBV-96 model several times using the following meteorological input ensembles¹:

name	# members	lead-times	spatial resolution \sim
COSMO-LEPS	16	1-114 h	10 km
DWD-GME	1 (det.)	1-174 h	20 km
DWD-MER	1 (det.)	78 h (174 h)	7 km (20 km)
ECMWF-IFS	1 (det.)	1-240h	16 km

¹ DWD-MER stands for a model run based on COSMO-EU forcing up to lead-time 78 h and on DWD-GME thereafter.

 \rightarrow A hydrologic raw ensemble of size 19 covering lead-times 1-114 h.

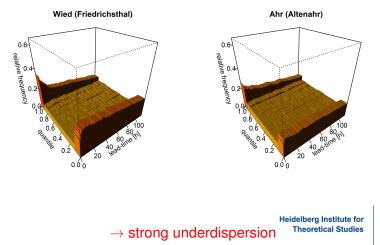
Heidelberg Institute for Theoretical Studies

Post-processing design

.

- Hydrologic re-forecasts from 01.11.2008 to 25.10.2011.
- Post-process the forecasts for each lead-time separately.
- Seasonal training and verification periods:

verification period	training period
November 2008	SON 2009, SON 2010, SO 2011
DJF 2008/2009	DJF 2009/2010, DJF 2010/2011
MAM 2009	MAM 2010, MAM 2011


November 2008, SON 2009, SON 2010

Heidelberg Institute for Theoretical Studies

SO 2011

Calibration raw ensembles: 3D PIT

Hemri et al. (2014)

30 April 2014 10 / 25

Procedure:

- Box-Cox transformation in order to meet normality assumption
- subtract the censoring threshold
- use the following left-censored (Gneiting et al., 2004) and right-truncated distribution (Thorarinsdottir & Gneiting, 2010):

$$P(Y \le y \mid \overline{f}_1, \dots, \overline{f}_K) = \begin{cases} 0 & \text{if } y < 0\\ \frac{\Phi(\frac{y-\mu}{\sigma})}{\Phi(\frac{v-\mu}{\sigma})} & \text{if } 0 \le y \le v \\ 1 & \text{if } y > v \end{cases} \text{ where } \rightarrow$$

Heidelberg Institute for Theoretical Studies

$$P(Y \le y \mid \overline{f}_1, \dots, \overline{f}_K) = \begin{cases} 0 & \text{if } y < 0\\ \frac{\Phi(\frac{y-\mu}{\sigma})}{\Phi(\frac{y-\mu}{\sigma})} & \text{if } 0 \le y \le v \\ 1 & \text{if } y > v \end{cases} \text{ where }$$

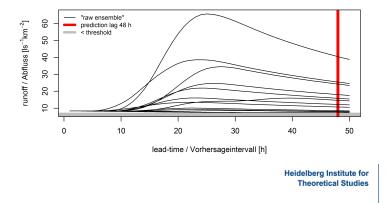
- y: forecast runoff
- **\bar{f}_k:** model forecasts, mean value if from an ensemble
- v: upper threshold: 2 times the maximum of the climatology, also Box-Cox transformed → prevents unrealistic high forecast quantiles
- $\sigma^2 = c_1 + c_2 S^2$ (S^2 : variance among all raw forecast members) Heidelberg Institute for
- censoring threshold is set to zero
- $\mu
 ightarrow$ see next slide

Theoretical Studies

Due to the right-truncation the location parameter μ has to fulfill:

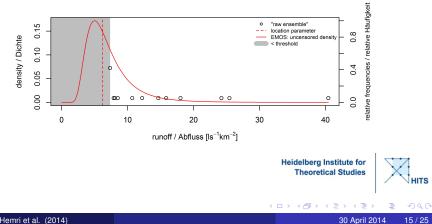
$$\mathbb{E}[Y|Y \le v] := \sum_{k=1}^{K} w_k \overline{f}_k + a \overline{\mathbb{1}_{f=0}} = \mu - \sigma \frac{\varphi(\frac{v-\mu}{\sigma})}{\Phi(\frac{v-\mu}{\sigma})}, \quad \text{where}$$

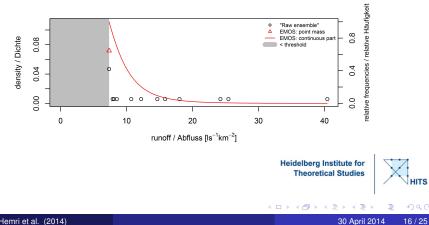
- *w_k*: weight of model *k*
- $\overline{\mathbb{1}_{f=0}}$: proportion of ensemble means \overline{f}_k that equal the lower threshold value (see Scheuerer, 2013)


•
$$\sigma = \sigma_0$$
 if $\mathbb{1}_{f=1}$

Parameters are estimated using minimal Continuous Ranked Probability Score (CRPS) estimation.

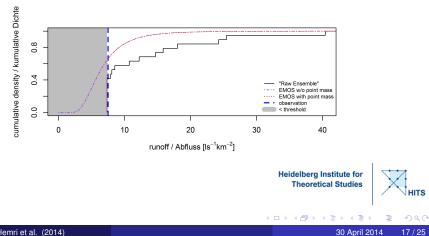
Censored EMOS: illustration I


Example forecast initialized on 5.9.2009 06:00 CET:

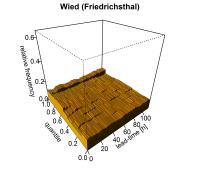

• • • • • • • • • • • •

HITS

Uncensored model pdf:



Censored model pdf:

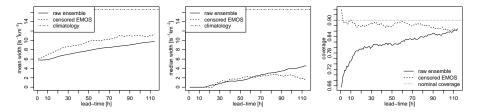


Censored EMOS: illustration IV

Censored model cdf:

Results: 3D PIT EMOS

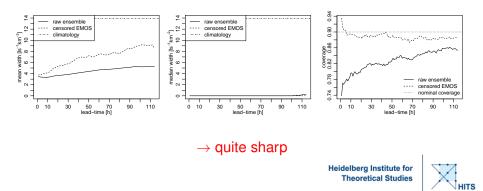
Ahr (Altenahr)


30 April 2014

18/25

Hemri et al. (2014)

From left to right: Mean prediction width, median prediction width and associated coverage of 90% prediction intervals:


 \rightarrow quite sharp

Heidelberg Institute for Theoretical Studies

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

From left to right: Mean prediction width, median prediction width and associated coverage of 90% prediction intervals:

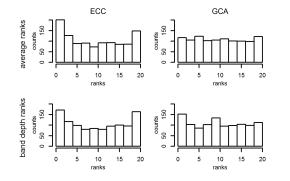
30 April 2014 20 / 25

- 4 ∃ →

Consider temporal dependencies among lead-times by:

- using a moving average of EMOS parameters (here: sliding window of size 5)
- using Copula approaches to consider correlation structure among lead-times:

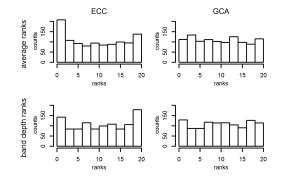
→ Random Ensemble Copula Coupling that conserves the rank order structure of the raw ensemble (Schefzik et al., 2013) → Gaussian Copula approach (GCA) that conserves the


covariance structure estimated from the observations in the training period (Pinson & Girard, 2012)

Heidelberg Institute for Theoretical Studies

Results: multivariate calibration Wied

Average and band depth rank histograms (Thorarinsdottir et al., 2013):


Heideberg Institute for GCA outperforms ECC in terms of correlation structure

Hemri et al. (2014)

Results: multivariate calibration Ahr

Average and band depth rank histograms (Thorarinsdottir et al., 2013):

Heidelberg Institute for GCA outperforms ECC in terms of correlation structure

Hemri et al. (2014)

- Statistical post-processing based on censored multi-model ensemble runoff forecasts yields appropriate predictive distributions.
- Censored EMOS improves calibration while not deteriorating sharpness much for the two examples considered.
- There exist straightforward methods for modeling of the temporal dependencies.
- GCA outperforms ECC in our example: → Are thus training observations better predictors of correlation structure than the raw ensemble?

- [1] T. Gneiting et al., Report to the Washington Technology Center, May 2004.
- [2] T. Gneiting et al., Monthly Weather Review, 133: 1098–1118, 2005.
- [3] T. Gneiting & A. E. Raftery, J. Am. Statist. Ass., 102: 359–378, 2007.
- [4] S. Hemri et al., *HyWa*, 58: 84–94, 2014.
- [5] P. Pinson & R. Girard, *Applied Energy*, 96 : 12–20, 2012.
- [6] R. Schefzik et al., *Statistical Science*, to be published, 2013.
- [7] M. Scheuerer, *Quarterly Journal of the Royal Meteorological Society*, DOI:10.1002/qj.2183, 2013.
- [8] T. L. Thorarinsdottir & T. Gneiting, *Journal of the Royal Statistical Society* (*Series A*), 173 : 371–388, 2010.
- [9] T. L. Thorarinsdottir et al., *arXiv:1310.0236*, 2013.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

