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Deterministic hydrologic forecasts
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Problem: statements on uncertainty impossible
Generate ensemble forecasts by using several models, model
configurations, and initial and boundary conditions.
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Hydrologic ensemble forecasts

atmospheric
model 1

atmospheric
model 2

atmospheric
model n

hydrologic
model 1

hydrologic
model 2

hydrologic
model m

m× n runoff
trajectories

Hemri et al. (2014) 30 April 2014 3 / 25



Post-processing of ensemble forecasts

Main goals by Gneiting & Raftery (2007):

Well calibrated,

Hypothetical PIT histograms

and sharp probabilistic forecasts.
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Hydrologic post-processing example

Joint project with the BfG on post-processing of ensemble forecasts for
river Rhine:

The BfG forecasting system censors forecast and observed runoff
values below a specific threshold (i.e. 5 m3/s).

This is done to handle uncertainty in low flow situations.
Standard post-processing methods rely mostly on continuously
distributed variables (very often Gaussian).
There is a need for a post-processing method for censored data:
→ Ensemble Model Output Statistics (EMOS) by Gneiting et al.
(2005) is very suitable for this purpose due to its flexibility and
simplicity
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Considered catchments

For testing the censored EMOS method we have selected the rivers
Wied and Ahr:

Source: Bundesanstalt für Gewässerkunde (BfG),
Koblenz (2013).
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Considered catchments: censoring

Percentage of censored observations (obtained from the climatology
from 1.11.1998 to 31.10.2008):

gauge catchment area [km2] % censored
Altenahr (ALTE) Ahr 746 72%
Friedrichsthal (FRIE) Wied 680 55%
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Meteorological forcing

The hydrologic raw ensemble is obtained by running the HBV-96 model
several times using the following meteorological input ensembles1:

name # members lead-times spatial resolution ∼
COSMO-LEPS 16 1-114 h 10 km
DWD-GME 1 (det.) 1-174 h 20 km
DWD-MER 1 (det.) 78 h (174 h) 7 km (20 km)
ECMWF-IFS 1 (det.) 1-240h 16 km

1 DWD-MER stands for a model run based on COSMO-EU forcing up
to lead-time 78 h and on DWD-GME thereafter.

→ A hydrologic raw ensemble of size
19 covering lead-times 1-114 h.
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Post-processing design

Hydrologic re-forecasts from 01.11.2008 to 25.10.2011.
Post-process the forecasts for each lead-time separately.
Seasonal training and verification periods:

verification period training period
November 2008 SON 2009, SON 2010, SO 2011
DJF 2008/2009 DJF 2009/2010, DJF 2010/2011
MAM 2009 MAM 2010, MAM 2011

· ·
· ·
· ·

SO 2011 November 2008, SON 2009, SON 2010
blabla
blabla
blabla
Ablabla
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Calibration raw ensembles: 3D PIT

→ strong underdispersion
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Censored EMOS: model I

Procedure:
Box-Cox transformation in order to meet normality assumption
subtract the censoring threshold
use the following left-censored (Gneiting et al., 2004) and
right-truncated distribution (Thorarinsdottir & Gneiting, 2010):

P(Y ≤ y | f̄1, . . . , f̄K ) =


0 if y < 0

Φ( y−µ
σ

)

Φ( v−µ
σ

)
if 0 ≤ y ≤ v

1 if y > v

, where→
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Censored EMOS: model II

P(Y ≤ y | f̄1, . . . , f̄K ) =


0 if y < 0

Φ( y−µ
σ

)

Φ( v−µ
σ

)
if 0 ≤ y ≤ v

1 if y > v

, where

y : forecast runoff
f̄k : model forecasts, mean value if from an ensemble
v : upper threshold: 2 times the maximum of the climatology, also
Box-Cox transformed→ prevents unrealistic high forecast
quantiles
σ2 = c1 + c2S2 (S2: variance among all raw forecast members)
censoring threshold is set to zero
µ→ see next slide
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Censored EMOS: model III

Due to the right-truncation the location parameter µ has to fulfill:

E[Y |Y ≤ v ] :=
K∑

k=1

wk f̄k + a1f =0 = µ− σ
ϕ(v−µ

σ )

Φ( v−µ
σ )

, where

wk : weight of model k
1f =0: proportion of ensemble means f̄k that equal the lower
threshold value (see Scheuerer, 2013)
σ = σ0 if 1f =1

Parameters are estimated using minimal Continuous Ranked
Probability Score (CRPS) estimation.
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Censored EMOS: illustration I

Example forecast initialized on 5.9.2009 06:00 CET:
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Censored EMOS: illustration II

Uncensored model pdf:
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Censored EMOS: illustration III

Censored model pdf:
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Censored EMOS: illustration IV

Censored model cdf:
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Results: 3D PIT EMOS

→ well calibrated
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Results: sharpness Wied

From left to right: Mean prediction width, median prediction width and
associated coverage of 90% prediction intervals:
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→ quite sharp
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Results: sharpness Ahr

From left to right: Mean prediction width, median prediction width and
associated coverage of 90% prediction intervals:
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Multivariate calibration

Consider temporal dependencies among lead-times by:

using a moving average of EMOS parameters (here: sliding
window of size 5)
using Copula approaches to consider correlation structure among
lead-times:
→ Random Ensemble Copula Coupling that conserves the rank
order structure of the raw ensemble (Schefzik et al., 2013)
→ Gaussian Copula approach (GCA) that conserves the
covariance structure estimated from the observations in the
training period (Pinson & Girard, 2012)
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Results: multivariate calibration Wied

Average and band depth rank histograms (Thorarinsdottir et al., 2013):

→ GCA outperforms ECC in terms of correlation structure
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Results: multivariate calibration Ahr

Average and band depth rank histograms (Thorarinsdottir et al., 2013):

→ GCA outperforms ECC in terms of correlation structure
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Summary

Statistical post-processing based on censored multi-model
ensemble runoff forecasts yields appropriate predictive
distributions.
Censored EMOS improves calibration while not deteriorating
sharpness much for the two examples considered.
There exist straightforward methods for modeling of the temporal
dependencies.
GCA outperforms ECC in our example:
→ Are thus training observations better predictors of correlation
structure than the raw ensemble?
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