

1. Motivation & Objectives

- Design and operation of urban drainage systems require long and continuous rain series.
- Problem: Short data availability (temporal and spatial required resolutions).
- Solution: Development of a precipitation model and generation of long synthetic series (Haberlandt et al., 2008).
 - Time resolution: 5 min
 - Spatial resolution: 1Km x 1Km

2. Methodology

a) Definition of rainfall events:

Variable Unit		Description	Mir
DSD	min	Dry Spell Duration	
WSD	min	Wet Spell Duration	
WSTpeak	min	Time to peak	
WSA	mm	Wet Spell Amount	1
WSI	mm/min	Wet Spell Intensity	0
WSPeak	mm/5min	Wet Spell Peak Intensity	

Analysis of external structure (Fig. 1); b)

Analysis of internal structure (Fig. 2); **C**)

- Regionalization of parameters: d)
 - Interpolation methods: ID (Inverse Distance), OK (Ordinary Kriging), EDK (External Drift Kriging)
 - Consideration of correlation between parameters
- Cross-Validation: e)

GEFÖRDERT VOM

- Precipitation model
- Simulation of floodings using fictional urban cases SWMM (Storm Water Management Model, EPA)

Synthesis of rainfall timeseries in a high temporal resolution – a parametric approach Ana Claudia Callau Poduje & Uwe Haberlandt

3. Study Area & Data								
 Figure 3: Locati 	on Ra	ross-Validatio 25 50	n 100 se Stati	eters ONS.	State of Location - Surface: - Location Germany. Rainfall m - 25 static - 10-20 ye - 5 minute	ower Saxony 47,624 km ² , 1: North-west heasurements: ons (Fig. 3), ears of record , e time resolution.		
4. Results								
Conside	red	mode	els					
Model WSI_2*Ncop WSI_Ncop WSI_1cop WSA_2*NCop	ModelDSDWSDWSI_2*NcopSI_2*NcopSIWSI_NcopSISIWSI_1copSISIVSA 2*NCopSA		N <i>f</i> (WS	/SA I,WSD)	WSI Generalized Pareto	Bivariate modelI per season1 per year1 per year1 for all stations1 per season		
WSA_Ncop WSA_1cop		Ge Ge	Б Ка		<i>f</i> (WSA,WSD)	A 1 per yearA 1 for all stations		
 Bivariate models <u>WSI-WSD</u>: Normal Copula Kendall's Tau (mean):-0.43 <u>WSA-WSD</u>: Hüsler-Reiss Copula Kendall's Tau (mean): 0.38 				Figure Pairs of observe and pseudo observe variable the 25 station	A: Opservations ed of 0 es of 0 es of 0 of 0 of 0 of 0 of 0 of 0 of 0 of 0	$WSA = \begin{bmatrix} 0 & 0.4 & 0.8 & 0.0 & 0.4 & 0.8 & 0.0 & 0.4 & 0.8 \\ 0 & 0.4 & 0.8 & 0.0 & 0.4 & 0.8 & 0.0 & 0.4 & 0.8 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$		
Validation of the precipitation model Error (%) = [Synthetic – Observed]*100/Observed								
WSI_2*Ncop WSI_2*Ncop WSI_Ncop WSI_Ncop	WSA_2*Ncop	Total Yearly F Total Yearly F	Rainfall Toods F S S S S S S S S S S S S S S S S S S	igure 5: rror in imulating ome bas tatistics, otal year ainfall an oodings.	Figure 6: Te observed e	<pre>P=5min him terval (5%) do do NISM est of fit: synthetic vs. est of fit: synthetic vs. extreme values series.</pre>		

EGU General Assembly, April 28 – May 2, 2014, Vienna

Parameters regionalization

- Best performance in reproducing Extreme Values
- Competitive performance in reproducing flood events.
- Interpolation: Including correlation improves results; Cross-Validation: Acceptable for some variables.

References: Haberlandt, U., Ebner von Eschenbach, A.-D., and Buchwald, I. (2008): A space-time hybrid hourly rainfall model for derived flood frequency analysis, Hydrol. Earth Syst. Sci., 12, 1353-1367, doi:10.5194/hess-12-1353-2008.

Leibniz Universität Hannover

Institute of Water Resources Management, Hydrology and Agricultural Hydraulic Engineering callau@iww.uni-hannover.de