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Abstract [Hydrok;gic Model quibrqﬁon] Impacts of Climate Chqnge on Spatial patterns of changes in hydrologic variables
HYdrOIOQiC Response ET, - ERC - summer ET, - HRC - summer

(mm)

Many studies based on global and regional climate models agree on the prediction that the Mediterranean

. ° . . ° . 6
area will be most likely affected by climate changes with consequent reduced water availability and °We callbrz?ted the.TI.N I?ased real time Integrated ba.sm.5|mulator (t.RIBS). hydrologic model e The tRIBS hydrologic model was forced with the disaggregated outputs of the four RCMs, for the 4
intensified hydrologic extremes. This study evaluates the effects of climate changes on the hydrologic (Fig. 5), using precipitation and potential evapotranspiration (ET ) forcings disaggragated at REF and FUT periods
response of a medium-sized Mediterranean basin through downscaling techniques and hydrologic hourly resolution (Fig.4), as described by Mascaro et al. (2013). s _ _ . . o > & Fig. 12 shows mabs of chanaes
simulations.The watershed is the Rio Mannu at Monastir basin (473 km?), located in an agricultural area of _ o . . ® A total of 240 years of simulations were performed using the parallelized version of tRIBS (Vivoni (rr?éan on EUT - rrl?ean on REgF)
southern Sardinia, Italy, which has suffered drought issues in the last decades. It is one of the seven study ®tRIBS is a process-based distributed hydrologic model (DHM), able to simulate the coupled etal.,, 2011) in the Saguaro super computer at Arizona State University. for-
cases of a multidisciplinary European research project, CLIMB (Climate Induced Changes on the Hydrology water and energy balance at high spatial and temporal resolution (Fig. 5). :
of Mediterranean Basins).In such basins, characterized by strong climate variability and by a complex o : , . - Real Evapotranspiration, ET..
hydrologic response, process based distributed hydrologic models, DHMs, combined with regional climate y Pr.eC|p|tat.|on was downss:aled from daily to hourly r.esolutlon and frorT\ 104 kmto 13 km Stream DISCharge - Root Soil Moist RSM B
models, RCMs, and downscaling techniques can help in the evaluation of the local impacts of climate (Fig. 3) using the Spa.ce Time RAINfall (STRAIN) multifractal model (Deidda et al., 2004; 120f (Ia) SR 19712000 ] 30 (o) o 2000 OOt SO MIOISTUTE, ‘
change on water resources decreasing the uncertainty. Since the Rio Mannu basin is affected by data Badas et al., 2006) (Fig.4). B 2041-2070 sl 2041-2070 - Depth of the ground water

sparseness (meteorological and streamflow data are collected in non overlapping time periods and at table, Nwt.
diverse time resolutions), two statistical downscaling strategies for precipitation and potential evapotran-

spiration have been designed which allow to obtain the high-resolution input data required for the

®ET was disaggregated at hourly resolution from daily T _ and T _, using dimensionless
functions based on the Penman-Monteith and Hargreaves formulas, and calibrated with

N
o

calibration of our hydrologic model, the TIN-based Real time Integrated Basin Simulator (tRIBS). We show hourly meteorological data available from 1995 to 2010 (Fig. 4). 601

how the DHM has been calibrated and validated with reasonable accuracy using the disaggregation tools. I : :

Next, the same downscaling algorithms have been used to fill the resolution discrepancy between RCMs Daily Rainfall STRAIN model Hourly Rainfall 01 10 RSM - ERC - spring RSM-HRC - spring ® Results are shown for the
and the hydrologic model. The outputs of four RCMs, selected as the best performing and bias corrected pa . ‘ _ = 20t 5t 0 models (Fig. 7¢,d) and the

Mean annual discharge (mm)
Monthly low flow days LFDs (d)
o

seasons with the most marked
changes.

3 Interception transpiration

IN

within the CLIMB project, have been downscaled and used to force the tRIBS during a reference
(1971-2000) and a future (2041-2070) period. Several hydro-climatic indicators have been computed
based on the time series and spatial maps produced by the DHM to assess the variation in Rio
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reference one. Our results confirms what is generally predicted for the Mediterranean area, showing . Daiy Evapotranspration N . Houry Evapotranspiration | TDJ 100L| I 20412070 +37
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Our study site is the Rio Mannu basin (RMB), located in the southern Sardinia, Italy (Fig.1) and (lvanov et al. 2004). : : = 0 g puts.
20 70 ERC ERE ERM HRC Nwt - ERC - summer Nwt HRC - summer

included within the CLIMB EU project (Ludwig et al.,2010):

Percentage of time streamflow is equalled or exceeded
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the RCMs. (b) Same as (a), but for the mean monthly basin averaged soil moisture in the top 10 cm (SSM).

by the spatial patterns of topography and soil texture.

Fig. 2 - (a) Land cover map. (b) Soil texture map. (c) Triangulated Irregular Network used as domain
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