NItrogen Ion TRacing Observatory (NIITRO): a possible mission for next ESA's M-class call

M. Yamauchi, I. Dandouras, and NITRO proposal team

IRF (Kiruna, Sweden), IRAP (Toulouse, France), UCL/MSSL (London, UK), NASA/GSFC (USA), FMI (Helsinki, Finland), Inst Space Sci. (Bucharest, Romania), UNH (Durham, USA), OEAW (Graz, Austria), IRF (Uppsala, Sweden), UCB/SSL (Berkeley, USA), UCLA (Los Angeles, USA), U. Alberta (Edmonton, Canada), SwRI (San Antonio, USA), Inst Atmospheric Physics (Prague, Czech), IASB-BIRA (Brussels, Belgium)

R28@GI2.3 (EGU2014-3822) Tuesday 2014-04-29

Multi-disciplinary aspects of N⁺ and N₂⁺

Origin of Life (ancient atmospheric composition) Amino acid formation depends on oxidation state of N (NH_3 or N_2 or NO_x) = relative abundance of N, O, & H near surface

Planetary atmosphere (origin and evolution) N is missing on Mars (0.01% of Earth ~ Venus ~ Titan)

Magnetosphere (ion dynamics and circulation) N⁺/O⁺ changes with F10.7 & Kp (Akebono cold ion obs.)

Ionosphere (heating and ionization) N⁺/N₂⁺/O⁺ ratio @ **topside ionosphere** depends on solar activity

Plasma Physics (acceleration) Different V₀ between M/q=14 and M/q=16 gives extra information

But, no observation of N⁺/O⁺ ratio at 0.1-10 keV range

Present knowledge on N⁺/O⁺ ratio in space

(a) Dependence on geomagnetic activities is larger for N⁺ than O⁺ for both <50 eV (Yau et al., 1993) and > 30 keV (Hamilton et a., 1988).

(b) N^+/O^+ ratio varies from <0.1 (quiet time) to \approx 1 (large storm). What we call O^+ is eventually a mixture of N^+ than O^+ .

(c) [CNO group]⁺ at <10 keV range is abundant in the magnetosphere.

(d) N/O ratio at Mars and C/O ratio at Moon are extremely low compared to the other planets.

(e) Isotope ratio (e.g., ${}^{15}N/{}^{14}N$) is different between different planet/comet. But this requires $M/\Delta M > 1000$ spectroscopy, and outside the scope of present study.

Possible methods separating N⁺ \Leftrightarrow O⁺ and N₂⁺ \Leftrightarrow NO⁺ \Leftrightarrow O₂⁺ (1) In-situ method

Ion Mass Spectrometer: high M/AM but low g-factor

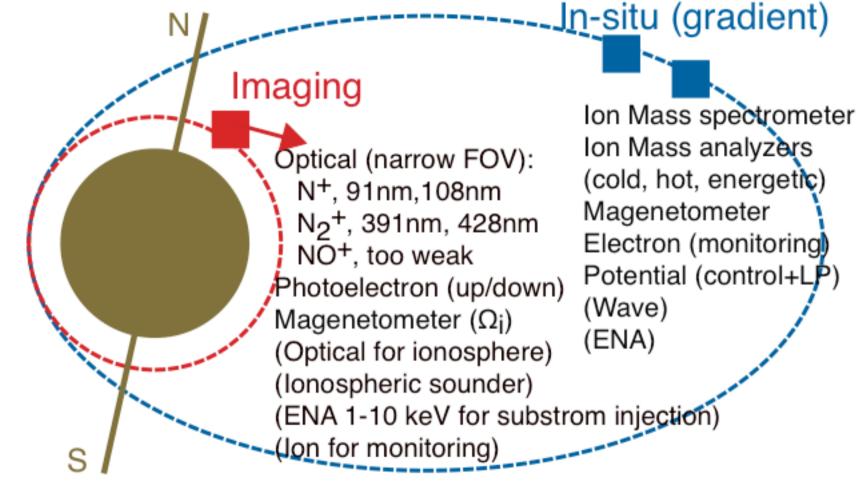
Ion Mass Analyser: high g-factor but marginal M/AM

Photoelectron: exact M but requires very high E/ Δ **E**

Wave $(\Omega_{O+} \& \Omega_{N+})$: M/ Δ M \propto f/ Δ f (0.01 Hz accuracy @ L=3)

(2) Remote sensing (line-of-sight integration)

Optical N⁺ line (91nm, 108nm) **& N₂⁺ line** (391nm, 428nm): must fight against contamination from topside ionosphere


Optical NO⁺ line: low emission rate but yet might be useful for calibration purpose by estimating ionospheric contribution

⇒ must be above the ionosphere& outside the radiation belt

4

Propose: 3-spacecraft mission (high inclination)

M-class: 3 medium-sized s/c S-class: 1 small in-situ s/c We start with 6-7 Re x 2000 km orbit to avoid radiation belt first 1-2 year, and gradually decrease apogee to explorer "dangerous" region

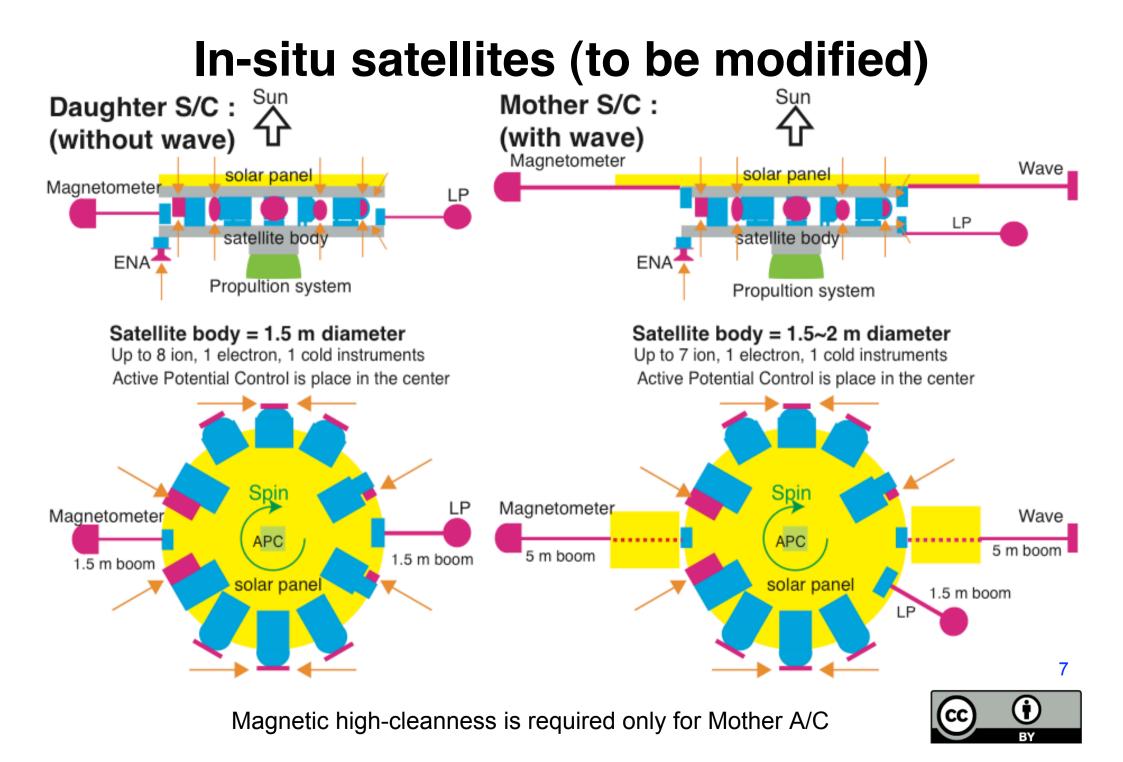
5

(†)

Needed Payloads

In-situ measurement (spin)

- * Mass spectrometer:
- * **lon mass analyzers** (hot):
 - (1) Magnet only
 - (2) Magnet & TOF
 - (3) Shutter TOF
 - (4) MCP-MCP TOF
 - (5) Traditional reflection TOF
- * lon mass analyzers (energetic):
- * lon mass analyzers (cold):
- * Magnetometer
- * Electron (simple or advanced)
- * Potential Control
- * Langmuir Probe
- * Wave (correlation to N/O ratio)
- * ENA (monitoring substorm)


Remote measurement (3-axis)

- * Optical (emission)
 - (1) N⁺: 91 nm, 108 nm
 - (2) N₂⁺: 391 nm, 428 nm
 - (3) O⁺: 83 nm, 732/733 nm
- * Electron (simple or advanced)
- * Magnetometerr ($\Delta f < 0.01 \text{ Hz}$)
- * lonospheric monitor (sounder, optical)
- * ENA (1-10 keV): first time tailward monitoring of substorm injection

• Two in-situ spacecraft is for gradient observation.

 Optical imager needs a scanner keep in-situ spacecraft within FOV.

Ion Instrument Requirement

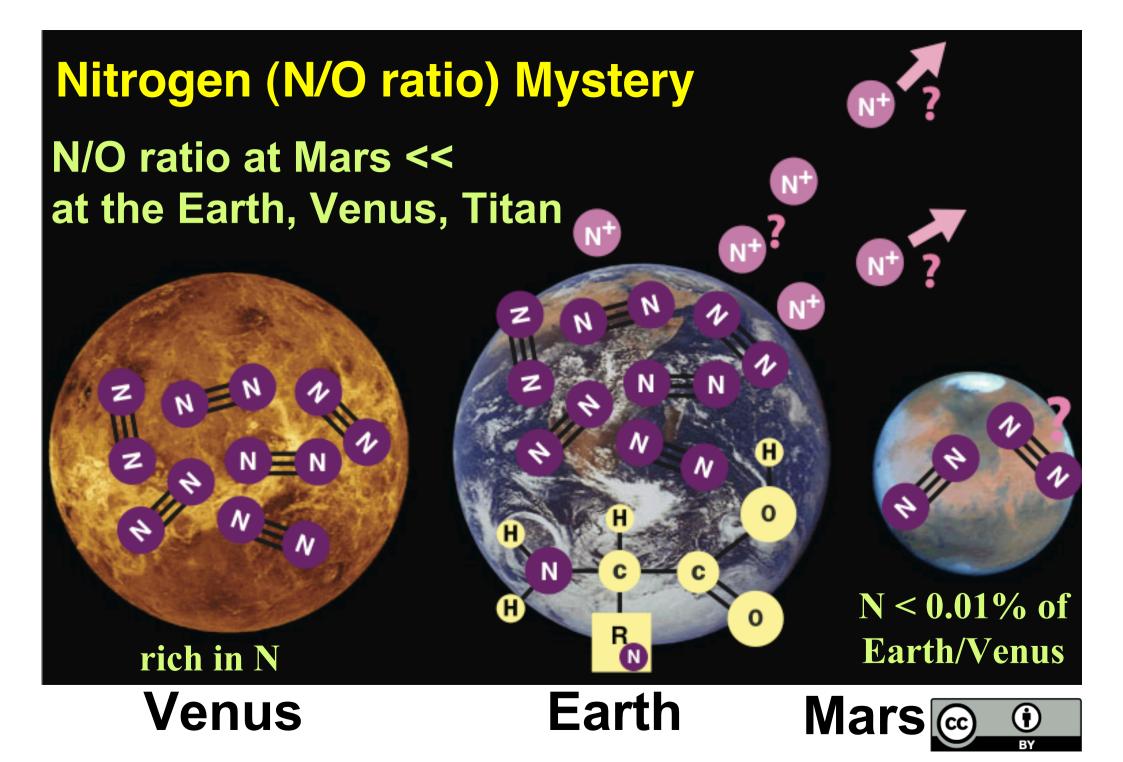
Mass resolution: $M_0/(M_0-M_N) = 8$ and $M_{N0}/(M_{N0}-M_{N2}) \approx M_{02}/(M_{02}-M_{N0}) = 16$. Energy resolution: $(E_{0+}-E_{N+})/E_{N+}=15\%$, but stepping can be wider.

- G-factor: G-factor N⁺ should be the same as for O⁺, i.e., G>10⁻⁴ cm² str keV/keV without efficiency.
- Time resolution: $\Delta t = few min$ is sufficient after integrating over several spins (and slow spin is ideal)
- (1) Ion Mass spectrometer (fine N/O ratio): If N⁺/O⁺ = 1/100 is to be detected for Gaussian spread, we need M/△M ≥ 200. Otherwise, low temporal resolution (5 min) is ok.
- (2) Hot Ion Mass analyser 1 (changes of N/O ratio): If the data is calibrated, M/∆M
 ≥ 8 with ∆E/E ≤ 7% (ideally 4%) can do the job. Otherwise, wide FOV (separate ⊥ and // directions) and without H⁺ is OK.
- (3) Hot Ion Mass analyser 2: Narrow FOV with 2π (tophat) angular coverage and ΔE/E ≤ 15%. Otherwise, M/ΔM ≥ 4 (H⁺, He⁺⁺, He⁺, CNO⁺, molecule⁺) is OK
- (4) It is nice to have simple ion energy spectrometer (without mass) for ∆E/E< 4% and high- & temporal resolution</p>

Other sciences

Science Question	What &where to measure?	requirement
N ⁺ escape history vs O ⁺ or H ⁺	N ⁺ , O ⁺ and H ⁺ observation @ escape route and destinations @ different solar & magnetospheric conditions.	#1 , ∆t~1min gradient + imaging
Ion filling route to the destination	same as above.	same as above.
Ionospheric energy re- distribution to N & O	N ⁺ , O ⁺ , H ⁺ , J _{//} , and e ⁻ at different solar conditions.	#1 , keV e⁻, J _{//} , eV ions
Ion energization mechanisms	energy difference among N ⁺ , O ⁺ and H ⁺ at different altitude, wave and field	#1 , ∆t<1min gradient, cyclotron Ω _i
Relation to substorm injection	correlation to ENA observation	#1 , ∆t~1min

#1: N⁺-O⁺ separation (narrow mass range) and H⁺-He⁺-O⁺ separation (wide mass range) at \perp and // directions with $\Delta E/E \leq 7\%$ (($E_{O+}-E_{N+}$)/ E_{N+} =15%) but E-stepping an be wider


9

Strategy / Action items

- (1) We try first M-class (AO: 2014), and then S-class (2015/2016) if we fail M-class. The M-class is "comprehensive understanding of distribution using 2-point in-situ plus imaging" with full 3spacecraft while S-class is "first core-spacecraft is used as pioneer of N+ search" with "core-spacecraft" only if M-class failed.
- (2) We seek also NASA as possible partner or its own mission (in that case the European instrument should be co-I level).
- (3) Launch is targeted for next solar maximum (before 2022). This gives extra opportunity that makes ongoing Van-Allen Probes and ERG to be extended for stereo observations.
- (4) We welcome astrobiology team

(5) We welcome optical team

Action Items on payload (New feedback from EGU 2014)

It might be a good idea to include ionospheric monitoring such as sounder or optical instrument (N_2^+/N_2 ratio tells energization of topside ionosphere). The ion escape should directly be related to the seed population, i.e., upper ionospheric condition. (But including sounder makes mission larger than M-class?)

It might be a good idea to include soil N_2 - N_2 O-NO-NO₂ ratio remote sensing to correlate the change of oxidation state of N and and escape of N⁺ or N_2^+ . The remote sensing satellite already exists. (Quetion is how to compare?)

We have to define "purely supporting" instruments that should be paid as a part of spacecraft (not as SI), such as the Active Potential Control. How about Langmuir Probe?

It might be a good idea to measure E-field for accurate measurement of particles (but aren't LP and APC enough?)

