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• Water scarcity causes multiple conflicts about water, e.g. 

– upstream ↔ downstream 

– irrigation ↔ ecosystems 

 

• Previous study: optimal surface water management. 

– Stochastic Dynamic Programming (SDP) to investigate optimal management. 

– combined surface water reservoir (state variable). 

– groundwater at fixed pumping costs and with volume constraints. 

 

• Current study: optimal conjunctive use of surface and groundwater. 

– Stochastic Dynamic Programming (SDP) to investigate optimal management. 

– two state variables. 

• a combined surface water reservoir. 

• a dynamic groundwater aquifer. 

– non-linearity (head-dependent pumping costs). 
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Subject to: 

Objective: Meet water demands at minimum cost over the planning period. 

• Water sources: Surface water (sw), groundwater (gw), SNWTP water (sn) or water curtailment (ct). 

Find expected value of storing a marginal amount of water for later use. 

• Solved with Stochastic Dynamic Programming (SDP). 

• Minimize the sum of immediate and future costs of meeting demands. 

𝐹∗ optimal value function 
𝑉 reservoir storage 
𝑄  reservoir inflow (runoff) 
𝑚 user index (agri., dom., ind., Beijing) 
𝑛  water source (sw, gw, sn, curtail) 
𝑐  cost of n 
𝑥  allocated quantity of n 
𝑟  surface water reservoir releases 
𝑏ℎ𝑝  hydropower benefits 

𝑝𝑘𝑙  transition probability from 𝑄𝑡 to 𝑄𝑡+1 
𝑘 inflow scenario in month t  
𝑙 inflow scenario in month t+1  
𝑡 time index, monthly steps used 
𝑑𝑚𝑑 water demand 
𝑠𝑠𝑤 spills around turbines 
𝑠𝑔𝑤 groundwater spills 

𝑄𝑜𝑢𝑡  non-used discharge to the sea  
𝑈 users upstream the reservoir  
𝐷 users downstream the reservoir  
𝑟𝑐ℎ groundwater recharge  
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Demand fulfillment 

Water balances 

Upstream users (no storage) 



Water users 

• Agriculture, industries, domestic, Beijing. 

Water demand 

• Inelastic, estimated from provincial statistics 
and field interviews. 

Willingness to pay (WTP) / curtailment costs 

• Estimated from provincial statistics, literature 
review and field interviews. 

• Agriculture: based on water use efficiency. 

Demands:  11 km3 

Runoff: 3 km3 

Groundwater recharge:  2 km3 

 

Water deficit: 6 km3  
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Rough annual water balance 



  /pumpP g h  

gw pump electricityc P c

Low pumping cost High pumping cost 
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Specific pump energy (J/m3)  

Pump cost (Yuan/m3)  
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Present regulation 



• Model run until water values remain constant between the years (60-70 
years). 

• 12 cores and IBM CPLEX ==>  4 days computation time. 

7/12 

Surface water reservoir     Empty --- Full 
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Today on the North China Plain 

• Individual users profit maximize individually 

• The users pay only pumping costs 

• Pumping costs not high enough to stop pumping 
until > 200m below surface 
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Our model -- long term lowest costs 

 

• Dynamic true groundwater and surface water value that depends on: 

– time 

– flow class 

– surface water storage 

– groundwater storage 

• The optimization reveals the shadow price of both groundwater and 
surface water. 

• The users should pay the head-dependent pumping costs + an additional 
tax equal to the shadow price. 
 
Pumping cost   +   shadow price  =  users’ groundwater price 
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Users’ water price 

• Large variations with a single combined surface water reservoir  
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Users’ water price 

• Large variations with a single combined surface water reservoir  

• The dynamic groundwater aquifer serves as a buffer and keeps the 
users’ price more stable (= easier to regulate for decision makers) 



Stochastic dynamic programming for dual-reservoir optimization. 

• Optimal surface water management is linked to optimal 
groundwater management.  

– Shadow price for all combinations of time, flow classes, 
sw storage and gw storage 

• Long term sustainable groundwater management found. 

– The dynamic groundwater aquifer serves as a buffer 
and stabilizes the water price 

• Brute force method with high computational demand. 

• Non-linear nature of head dependent pumping costs can be 
accommodated. 

 

• Effect of local drawdown (cone of depression at each well). 

• Discounting of future costs. 

• Sensitivity analysis. 
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