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O,
Background water scarcity conflicts @:-EA

e Water scarcity causes multiple conflicts about water, e.g.
— upstream < downstream

— irrigation <> ecosystems

e Previous study: optimal surface water management.
— Stochastic Dynamic Programming (SDP) to investigate optimal management.
— combined surface water reservoir (state variable).

— groundwater at fixed pumping costs and with volume constraints.

e Current study: optimal conjunctive use of surface and groundwater.
— Stochastic Dynamic Programming (SDP) to investigate optimal management.
— two state variables.
e acombined surface water reservoir.
e adynamic groundwater aquifer.

— non-linearity (head-dependent pumping costs).
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Case Ziva River Basin, Northern China
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O,
Method optimization problem @:-EA

Objective: Meet water demands at minimum cost over the planning period.

* Water sources: Surface water (sw), groundwater (gw), SNWTP water (sn) or water curtailment (ct).
Find expected value of storing a marginal amount of water for later use.

* Solved with Stochastic Dynamic Programming (SDP).

* Minimize the sum of immediate and future costs of meeting demands.
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Method optimization problem

Water users
e Agriculture, industries, domestic, Beijing.

Water demand

e |nelastic, estimated from provincial statistics
and field interviews.

Willingness to pay (WTP) / curtailment costs

e Estimated from provincial statistics, literature
review and field interviews.

e Agriculture: based on water use efficiency.

Rough annual water balance

Demands: 11 km3
Runoff: 3 km3
Groundwater recharge: 2 km3
Water deficit: 6 km3
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Method head-dependent pumping costs

Unsaturated
zone

Groundwater

[T

Low pumping cost

Ah

Unsaturated
zone

Groundwater

High pumping

> Ah

@)
®)
0n
—~

Pum =(£9AN)/ &

pump

c. =P ¢C

gw ~— ' pump “electricity

OMON

Specific pump energy (J/m3)

Pump cost (Yuan/m?3)

5/12



OMON

Present regulation

Method optimization algorithm

Genetic algorithm
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OMON

e Model run until water values remain constant between the years (60-70
years).

e 12 cores and IBM CPLEX ==> 4 days computation time.

Results total costs
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O,
Results application in policy support @:—H

Today on the North China Plain

e Individual users profit maximize individually
e The users pay only pumping costs

e Pumping costs not high enough to stop pumping
until > 200m below surface

10 m a
max 275 km?3
GW 200 m
\/
---------- E | | ] I | | | | | ] | | | | | | | ] | O km3

t, ts tio ti5 b0 8/12



OMON

Results application in policy support

Our model -- long term lowest costs

e Dynamic true groundwater and surface water value that depends on:

— time

— flow class

— surface water storage
— groundwater storage

e The optimization reveals the shadow price of both groundwater and
surface water.

e The users should pay the head-dependent pumping costs + an additional
tax equal to the shadow price.

Pumping cost + shadow price = users’ groundwater price
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O,
Results application in policy support @:—H
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O,
Results application in policy support @:-EA
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O,
Results application in policy support @:—H

Users’ water price

e Large variations with a single combined surface water reservoir
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O,
Results application in policy support @:—H

Users’ water price

e Large variations with a single combined surface water reservoir

e The dynamic groundwater aquifer serves as a buffer and keeps the
users’ price more stable (= easier to regulate for decision makers)
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Conclusions

Stochastic dynamic programming for dual-reservoir optimization.

e Optimal surface water management is linked to optimal
groundwater management.

— Shadow price for all combinations of time, flow classes,
sw storage and gw storage

e Long term sustainable groundwater management found.

— The dynamic groundwater aquifer serves as a buffer
and stabilizes the water price

e Brute force method with high computational demand.

e Non-linear nature of head dependent pumping costs can be
accommodated.

Future work

e Effect of local drawdown (cone of depression at each well).
e Discounting of future costs.

e Sensitivity analysis.




Questions

Acknowledgements

Academic Initiative

Open standards, open source and IBM resources for academia

| H

Hai River Water
Resources Commission

Hugo Maxwell Connery

Otto Mgnsted Foundation Head of IT, DTU Environment

Key Project for the Strategic Science Plan
in IGSNRR,CAS (2012zZD003)



