Application of the Bulgarian Emergency Response System in Case of Nuclear Accident in Environmental Assessment Study

D. Syrakov, B. Veleva, E. Georgieva, M. Prodanova, K. Slavov, M. Kolarova

National Institute of Meteorology and Hydrology (NIMH), Bulgarian Academy of Sciences, Sofia, Bulgaria, blagorodka, veleva@meteo.bg

ABSTRACT

The development of the Bulgarian Emergency Response System (BERS) for short term forecast in case of accidental radioactive releases to the atmosphere has been started in the mid 1990's [1] BERS comprises of two main parts - operational and accidental for two regions "Europe" and "Northern Hemisphere". The operational part runs automatically since 2001 using the 72 hours meteorological forecast from DWD Global model, resolution in space of 1.5° and in time - 12 hours. For specified Nuclear power plants (NPPs), 3 days trajectories are calculated and presented on NIMH's specialized Web-site (http://info.meteo.bg/ews/). The accidental part is applied when radioactive releases are reported or in case of emergency exercises. BERS is based on numerical weather forecast information and long-range dispersion model accounting for the transport, dispersion, and radioactive transformations of pollutants. The core of the accidental part of the system is the Eulerian 3D dispersion model EMAP calculating concentration and deposition fields [2].

The system is upgraded with a "dose calculation module" for estimation of the prognostic dose fields of 31 important radioactive gaseous and aerosol pollutants. The prognostic doses significant for the early stage of a nuclear accident are calculated as follows: the effective doses from external irradiation (air submersion + ground shinning); effective dose from inhalation; summarized effective dose and absorbed thyroid dose [3]. The output is given as 12, 24, 36, 48, 60 and 72 hours prognostic dose fields according the updated meteorology.

The BERS was upgraded to simulate the dispersion of nuclear materials from Fukushima NPP [4], and results were presented in NIMH web-site. In addition BERS took part in the respective ENSEMBLE exercises to model 131 and 137Cs in Fukushima source term. In case of governmental request for expertise BERS was applied for environmental impact assessment of hypothetical accidental transboundary radioactive pollution. The consequences were estimated based on the worst emission scenario for the existing basic reactor type, selection of real meteorological forecast conditions, favoring the direct transport of the contaminated air masses to the territory of the country in consideration. In the present work BERS is used to estimate the worst case accidental scenario impact from a possible new unit of Paks Nuclear Power Plant, Hungary over the territory of Bulgaria.

accidental part of BERS.

artesian coordinate system in horizontal (Aral sg-linear terrain-following staggered Z-coord occesses involved:	awa's C type). nate system.	
dvection	Vertical de	omain - 4 levels
TRAP scheme	levels 1	ayers' depth
Bott's type		1930 m
explicit positively definite	1430 m 92	в
conservative		
limited numerical viscosity	650 m 62	0 m
very fast		774
orizontal diffusion:	200 - 27	5 m
the simplest explicit scheme	200 m	100 m
ertical difusion	.01	20 m
the simplest implicit scheme variable steps		

ariable diffusion coefficient Dry deposition: bottom boundary condition to vertical diffusion equation Wet removal: simple decay rate

Operational part of the BERS - forecasted trajectories

http://info.meteo.bg/ews/EWS

Accidents with off-site releases of radionuclides to the environment and atmosphere. RNG,¹³¹I и ¹³⁷Cs are given in PBq (1.10¹⁵ Bq)

Accident	Data	Released radionuclides in PBq			Others
		RNG	I-131	Cs-137	
Chelyabinsk-40 plutonium plant, Kyshtym, USSR*	September 1957			3.6 E-03	100 PBq medium and long-lived 5.4 PBq ⁹⁰ Sr+ ⁹⁰ Y
Windscale accident, Northern England *	October 1957	14 133Xe	0.74-1.2	0.046	0.2 TBq ⁹⁰ Sr 1.6 TBq ²³⁹ Pu
SL-1 Reactor, Idaho falls, USA *	January 1961		2.6E-03		
Rocky Flats plant, Denver, USA	1969				0.22 TBq Pu
Three Mile Island, Unit 2, USA	March 1979	77.7	5.55E-04		
Chernobyl NPP accident, former USSR	26-April 1986	6533 ¹³³ Xe+ ⁸⁵ Kr	1760	86	
Tokaimura nuclear fuel processing plant, Japan	30.09. 1999				~200 persons up to 21 mGy or n, γ
Fukushima, Dai -ichi NPP, Japan	March 2011	11000 133Xe	160	15	

There were altogether 543 tests in the atmosphere. Global release of 131 and ³⁷Cs from atmospheric nuclear weapon testing is 675 000 PBq and 948 PBq respectively (UNSCEAR, 2000, UNSCEAR 2008)

BERS validation - ETEX, RTMOD, ENSEMBLE

ENSEMBLE Volcano Exercise

BERS simulations vrs. ensemble ones

A. Concentration fields at height 6 km

B. Accu mulated Dry Deposition fields (earth surface)

C. Accumulated Wet Deposition fields (earth surface)

ENSEMBLE: Web-based decision support system to collect atmospheric dispersion forecasts produced by various participants. The ENSEMBLE system allows users to perform on line ensemble analysis.

ENSEMBLE consortium run Volcano&Fukushima exercises, 2011.

Volcano Results: BERS is ranked as 5th of the participated 11 models in percentage of overlapping

BERS upgrade with dose assessment block

Radionuclides selection and grouping for simulation of the early stage of nuclear accident

In the present version of BERS 31 radioactive isotopes in gaseous and aerosol form are modeled and grouped in 8 "lump pollutants" groups

- Group 1 (long lived RNG): Kr-85, Xe-133, Xe-133m; Group 2 (RNG with medium T1/2): Xe-135 Kr-85m Kr-88+Rb-88;
- Group 3 (short lived RNG): Kr-87, Xe-135m, Xe-138;
- Group 4 (gaseous iodine): I-131 as I2;
- Group 5: Carbon-14, tritium; (not of major significance)
 Group 6 (long lived aerosols): Cs-137/Ba-137m, Sr-90/Y-90, Pu-239, Co-60 Cs-134 Ru-106
- Group7 (aerosols with medium T1/2): Zr-95. Sr-89. Ru-103. Nb-95. Ce-141, Cs-136, Ba-140/La-140, I-131; • Group 8 (short live aerosols): Te-132, I-133, I-135, I-132, Cs-138:
- The radionuclides are modeled as 4 basic groups according to dispersion:
- Radioactive noble gases (RNG) Iodine (131], 132], 133] and in some cases 134] and 135]) in different chemical and physical forms:
- Aerosols. Volatile tellurium and alkaline metals are expected to be released as aerosols, as well as iodine isotopes, attached to the aerosols Others - 3H and 14C

The most important doses during the early stages of accident calculated from BERS

- a) Absorbed dose in thyroid gland denoted as D_{tyr};
- b) Effective dose by inhalation of radioactive substances, excluding RNG (Einh);
- c) Effective dose by external exposure to the radioactive plume (air submersion), and ground shinning - E. and E.

Accidental scenario – test cases with BERS

The scenario for accidental release of mixture of radionuclides to the atmosphere is based or the severe accident scenario with core melt (BY+CD) for an existing power reactor of Paks (WWER 440) The scenario is one of the typical scenarios of RODOS system. In our case for BERS the 55 radionuclides are reduced to 31 main radiologically important radionuclides incorporated in BERS

BERS development

2001 – putting of BERS into operation

2010 – for ENSEMBLE Volcano exercise

continuous source long term calculations

2011 – for ENSEMBLE Fukushima exercise:

Case 1

00.00

100

2 00

0.89.10¹⁹

Date

(UTC)

(m)

Start of releas

duration (hours)

007 – multi-nuclide treatment, exposure doses calculations

vertical diffusion coefficients aloft – 10% of PBL ones

· increase the space resolution of NH from 300 to 25 km

respective upgrade of EMAP and visualizing software

new Figures 7, 8 added to BERS web-site containing the results

Selected test cases with real meteorology for simulations with RERS

of hypothetical accidental releases from Paks NPP, Hungary

03.02.2013 07.02.2013 03.03.2013 04.01.2013 12.05.2012

00.00

100

2.00

0.89.1019

Case 4 Case 5

06.00

100

2.00

0.89.1019

09:00

100

2.00

0.89.1019

Case 2 Case 3

15.00

100

2.00

0.89.1019

from every day hypothetical release simulations (animated).

respective upgrade of meteorological pre-processing

· NCEP meteorology added over 2 km (to the DWD data)

• new vertical structure - up to 12 km, exercise specific levels

PGRADES of BER

Forecasted ground level radioactivity concentrations 24, 48 and 72 hours after start of hypothetical release

Ecrecasted accumulated deposition on the ground 72 hours after start of 2hours hypothetical release. Case 1, 2, 3 and Case 5

Forecasted dose fields from ground shining, from inhalation, effective dose and absorbed dose in the thyroid gland 72 hours after start of 2hours hypothetical release, worst test scenario - Case 5.

ſ	Acknowledgements
---	------------------

This study was partly supported through the Project BG051PO001-3.3.06-0063 funded by European Operational Program "Human Resources Development"

 D. Syrakov, M. Prodanova, K. Stavov, Inernationsal J. Environment and Pollution, 20, 1-6 (2003) 286-296.
 D. Syrakov, B. Veleva, M. Prodanova, T. Popova, M. Kolarova, Journal of Environmental Radioactivity 100 (2009) 151–156.
 D. Syrakov, M. Prodanova, I. There, Sci. Publ.: Ecology & Safety Vol. 6 Part 1 (2011) 94-102. www.scientific-publications.net. 5. Svrakov D., M. Prodanova, K. Slavov, B. Veleva (2011), BJMH, vol 16. No2., 18-25.