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Motivation Conclusions

Major sources of gravity variations observed by superconducting and absolute gravimeters are related to atmospheric and hydrological mass variations. The gravity response || Main features and benefits of mGlobE:
to these variations must be considered at the regional to global scale. Otherwise, seasonal and inter-annual signals typical for large-scale variations remain in gravity residuals.
The analysis of global hydrological efiects is a challenging task as their amplitude may, depending on the location, exceed the contribution of local hydrology. Previous studies
have shown major differences between atmospheric etfects based on single admittance factor and those considering global weather models. However, the availability of these
atmospheric reductions is limited to selected group of sites with superconducting gravimeters maintained within the GGP (Global Geodynamics Project).

The Matlab-based tool for the analysis of global gravity effects, mGlobE, enables the computation of the global contribution of atmosphere, continental water storage and

ocean to gravity variation. The m(GlobE results are evaluated at three superconducting gravimeter sites (Conrad, Vienna, Sutherland) and compared to data from other
services (ATMACS, GGP /Strasbourg Loading service).

Computation of gravity response to large scale variations for any location worldwide, i.e. suitable for all absolute or superconducting/relative gravimeters
Inclusion of five freely available global hydrological models, one ocean bottom pressure model and the GRACE monthly mass grids

Easy implementation of other global hydrological models like WGHM or alternative ocean models such as OMCT

The inclusion of different models allows the uncertainty estimation of gravity response to continental water storage and ocean bottom pressure variations

Unified combination of oceanic and continental water storage models considering simplified mass exchange and identical coastlines
The mGlobE will be freely available
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